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ABSTRACT
Network measurement is an essential building block for a variety of

network applications such as traffic engineering, quality of service,

load-balancing and intrusion detection.Maintaining a per-flow state

is often impractical due to the large number of flows, and thus mod-

ern systems use complex data structures that are updated with each

incoming packet. Therefore, designing measurement applications

that operate at line speed is a significant challenge in this domain.

In this work, we address this challenge by providing a unified

mechanism that improves the update time of a variety of network

algorithms. We do so by identifying, studying, and optimizing a

common algorithmic pattern that we call q-MAX. The goal is to

maintain the largest q values in a stream of packets. We formally

analyze the problem and introduce interval and sliding window

algorithms that have a worst-case constant update time. We show

that our algorithms perform up to×20 faster than library algorithms,

and using these new algorithms for several popular measurement

applications yields a throughput improvement of up to ×12 on real

network traces. Finally, we implemented the scheme within Open

vSwitch, a state of the art virtual switch.We show thatq-MAX based

monitoring runs in line speed while current monitoring techniques

are significantly slower.

CCS CONCEPTS
• Networks→ Network algorithms.
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1 INTRODUCTION
Measurement tasks such as finding the heavy hitter flows [29, 49],

identifying the most frequent subnets [12, 17], approximating the

traffic’s entropy [10, 43], detecting loss [39, 57], traffic anomalies [50,

68] andmicro-bursts [9] are at the core of network applications such
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as routing, traffic engineering, load balancing, and intrusion detec-

tion [20, 23, 36, 42, 44, 51, 52, 63]. Measurements are performed at

a single device [15, 40, 59, 64] or on multiple Network Measurement
Points (NMP) [34, 47, 48]. They can also be categorized as datapath

algorithms [15, 64], or ones that require the controller involvement

in answering queries [47, 59]. The measurement data is collected

by a network controller that creates a Network-wide view of the

traffic. Such a holistic view is necessary for identifying various

network anomalies such as Super Spreaders and port scanners [50].

The measurement period may refer to a fixed interval (e.g., a day)

or a sliding window, (e.g., the last ten minutes) [14, 41, 58]. The

literature offers a variety of measurement algorithms. These vary

in their optimization goals, measurement metrics, implementation,

accuracy guarantees, and measurement period (e.g., interval or

sliding window, single-device, or network-wide).

Our work identifies a (previously overlooked) design pattern that

naturally arises in a variety of measurement algorithms. Specifically,

algorithms often maintain a fixed sized reservoir of the q largest

(or smallest) values according to some metric. The functionality

of this reservoir varies; e.g., in some cases, it is used to maintain

a list of the heavy hitters [60], while [11] uses it to estimate the

number of distinct keys. In general, the stored values are used to

estimate specific properties of the traffic [11, 18, 38]. The best cur-

rent implementations of maintaining the q largest values utilize

standard data structures such as Heaps, SkipLists, and Balanced

Search Trees. However, in all these methods the worst-case update

time is logarithmic O(logq). Such a limitation is significant since

several relevant applications require large values of q (e.g., values

of q = 10
6
or q = 10

7
are reasonable for the network-wide sam-

ple of [18], and for Priority Sampling [37]). It turns out that one

can improve the performance of many network applications by

optimizing the algorithm for maintaining the largest q values. We

emphasize that q-MAX is not a sampling, heavy hitters, or sketch-

ing algorithm; it is designed for the simple sub-task for finding the

large values in a numbers stream, a building block which is used in

all the above applications and many others.

Contribution: Our work is based on the observation that many

algorithms maintain a reservoir of the q maximal values and list

them upon demand and that this interface is slightly weaker than

that of standard data structures such as heaps and SkipLists. We

formalize the q-MAX problem and present algorithms for it that

use the optimal O(q) space, and operate in constant update time.

Such algorithms asymptotically improve the update time of stan-

dard solutions. This implies a broad range impact on numerous

algorithms in many domains. Examples include: (1) Network-wide

heavy hitters [18]; (2) Priority Sampling [37]; (3) Priority Based
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Aggregation [38]; (4) finding the number of distinct flows [11]; (5)

Bottom-k sketches [24]; (6) the Universal Monitoring sketch [60],

and (7) the LRFU cache algorithm [55]. We also show lower bounds

that indicate that our q-MAX algorithm is near optimal.

We further study an extension of the q-MAX problem toW -sized

sliding windows. Disappointingly, such algorithms are known to

require Ω(W ) space, which is prohibitive for large windows. In-

stead, we consider similar definitions such as exponential decay

(which enables us to implement the LRFU policy), and slack win-
dows [14] whose size varies betweenW andW (1 − τ ) for some

small parameter τ > 0. We prove a lower bound for slack-windows

and show space-optimal algorithms that update in constant time,

and allow for efficient queries.

We asymptotically improve the update time of the state-of-the-

art for numerous tasks. A notable exception is the Count Distinct

problem, where existing techniques achieve constant update time

using different methods. However, we asymptotically improve the

query time for the Count Distinct problem [14] on slack windows.

Additionally, our extension to network-wide heavy hitters yields the

first routing oblivious network-wide algorithm for sliding windows.

We evaluate the throughput of the q-MAX algorithm compared

to solutions based on standard open source implementations of

SkipList and Heap. Our results indicate that theq-MAX algorithm is

up to ×23 faster than these algorithms. We further study the impact

of replacing a standard data structure algorithm with our q-MAX al-

gorithm in Priority Sampling [37], Priority Based Aggregation [38],

and in network-wide heavy hitters [18].We evaluate the throughput

on real packet traces and show a speedup of up to ×4 compared to a

Heap-based implementation and up to ×12 compared to a SkipList

based implementation. We also show that the throughput of our

slack algorithm is attractive for a variety of configurations.

The actual expected speedup of software-based measurements

was studied through an integration of theq-MAX algorithms within

the Open vSwitch (OVS) stack [1]. Open vSwitch is a prevalent

production quality virtual switch designed to enable massive net-

work automation through programmatic extension. Our evaluation

indicates that when q increases to values over 10
6
, the Heap and

SkipList implementations reduce the switch throughput while the

q-MAX implementations keep up with the OVS well until q = 10
7
.

We further show that the same scheme can also be used to en-

hance the performance of caching algorithms. Specifically, we show

that an Exponential-Decay version of q-MAX enables constant time

LRFU caches. Combining this result with the theoretical analysis,

the experimental evaluation and the practical implementation of our

algorithms in the networkmonitoring domain provide a solid indica-

tion for the impact and importance of q-MAX as an essential build-

ing block in delivering high performance streaming algorithms.

2 MOTIVATION AND RELATEDWORK
We first outline five measurement methods that utilize the q-MAX

pattern and outline the improvement. We first observe that the

q-MAX pattern is different than the pattern of some heavy hitter

algorithms that maintain the largest flows [13, 16, 35, 62, 67] as the

size of flows changes whereas q-MAX finds the largest numbers in

a stream of (fixed) numbers.

2.1 Priority Sampling and Priority Based
Aggregation

Sampling is extensively used in network telemetry. It is used both as

a mean reduce the bandwidth to the control [39, 69] and to acceler-

ate software implementations ofmeasurement algorithms [12]. Sam-

pling can be done either for the number of packets or, more gener-

ally, according to someweight (e.g., the payload size).Weighted sam-

pling provides more accurate visibility of the underlying byte-traffic.

This is desired by applications such as traffic engineering and load

balancing that attempt not to exceed the links’ bandwidth limitations.

Priority Sampling [37] is an optimal weighted sampling tech-

nique. That is, Priority Sampling has smaller or equal variance

compared to any other sampling method. Given a weighted stream

⟨x1,w1⟩ , . . . of distinct keys (i.e., i , j =⇒ xi , x j ) and a weight

for each key. The goal is to produce a sample of k keys such that

keys are sampled with a probability proportional to their weight.

To do so, Priority Sampling assigns each key with the value:
wi
r ,

where r is uniformly selected in [0, 1]. The Priority sample contains

the k keys with the maximal values. Priority Based Aggregation

(PBA) [38], generalizes Priority Sampling so that keys can appear

multiple times, and the goal is to sample each key with a proba-

bility proportional to its total weight. That is, flow x is sampled

proportionally to its byte volumewx ≜
∑
⟨xi ,wi ⟩ |xi=x wi . Here,wi

is the byte size of the i’th packet. This is a natural extension for

network measurement that is often focused on per-flow aggrega-

tion [7, 49]. PBA also maintains a fixed sized reservoir that stores

the items with maximal values. It differs from Priority Sampling

manifests in the way values are calculated. Thus, our q-MAX al-

gorithms improve the update time to a constant and extend these

methods to slack windows.

2.2 Bottom-k Sketch
Bottom-k Sketches [24] summarize weighted streams and enable

diverse statistical properties to be calculated on any subset of the
stream Examples include averages, percentiles, variance and higher

frequency moments. Bottom-k sketches can be merged at a central

SDN controller, and thus achieve network-wide visibility of the

traffic. The properties derived from Bottom-k Sketches are often

used as an input for networking applications. For example, the tail

latency of flows is a useful quality of service metric [54].

2.3 Count Distinct
Estimating the number of distinct items in a subset of the packets

is often used by network applications. For example, identifying

a source IP that contacts many distinct ports is used to identify

port-scanners [50].

The work of [11] suggests several algorithms for estimating the

number of distinct items in a stream. The fastest of these algorithms

applies a hash function to each key and maintains a fixed size

reservoir containing the smallest observed hash values. The number

of distinct keys is statistically inferred from the maximal value in

the reservoir. Intuitively, if the hashed values are numbers within

[0, 1], then a value smaller than 0.001 is encountered once per 1, 000

distinct values. Increasing the reservoir size reduces the variance

of the method and reduces outliers. For example, when using a

reservoir size of 2 the estimation is unaffected if a very small hash
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value is encountered once very early during the measurement. The

original implementation uses a Heap that works in logarithmic time,

and ourq-MAX solution allows for constant time updates. In sliding

windows, our slack window q-MAX asymptotically improves query

time compared to the best algorithm in this model [14].

2.4 Universal Monitoring
Universal Monitoring (UnivMon) [60] is a space-efficient technique

for monitoring multiple useful metrics in a single unified sketch.

The user then provides the desired metric at query time. UnivMon

maintains multiple Count Sketch [22] instances for various sub-

streams, and each sketch is also has a min-Heap to track its heavy

hitters. The heavy hitters of the different substreams are then used

to calculate a variety of measurement functions (e.g., the number

of distinct flows, the distribution’s entropy, and its frequency mo-

ments). We can reduce a logarithmic factor from the per-packet

update time by replacing the heap with a q-MAX algorithm.

2.5 The DBMMonitoring method
The Dynamic Bucket Merge (DBM) algorithm [65] is designed to

monitor bandwidth at granularities which are defined at query time.
To that end, it dynamically partitions the measurement period into

m buckets (wherem controls the allocated memory, and thus, the

error). When the number of buckets exceedm they merge the two

buckets whose merging will result in the smallest error. To that

end, they use a heap of all consecutive bucket pairs and update it

for each arrival/merge. By replacing the heap with q-MAX, we can

speed up this lookup and support faster updates.

2.6 Network-wide Heavy Hitters
The works of [18, 47, 49, 56] consider network-wide settings where

multiple Network Measurement Points (NMPs) perform local mea-

surements and report to a centralized controller that merges their

reports to form a global view of the traffic. The work of [18] offers

a passive measurement solution without assumptions on the rout-

ing or topology of the network. In their algorithm, multiple NMPs

each sees some of the packets in the stream (but not all), and the

same packet may traverse multiple NMPs. The goal is to detect the

largest heavy hitter flows in the network without double-counting

the same packet. Their algorithm assigns a hashed identifier to

each packet, and each NMP stores the k packets with the minimal

hash value. The controller merges reports from all NMPs to obtain

the k globally minimal packets (according to hash value). Such a

sample is a uniform sample from the entire network that can be

used to identify the heavy hitter flows without double counting.

The original implementation uses a heap to maintain the sample

which results in logarithmic update complexity, which we improve

to a constant with our q-MAX algorithm.

2.7 The LRFU Cache Policy
The LRFU cache policy [55] is among the most famous cache poli-

cies. It offers a spectrum of strategies that combine recency and

frequency and achieves performance in many domains. In LRFU,

the cache maintains an exponentially decaying score for each stored

item, and the item with the smallest score is evicted. Typical LRFU

implementation leverage heaps or priority queues that operate in

logarithmic complexity. Unfortunately, the logarithmic update com-

plexity makes LRFU impractical in many domains [61]. Our work

achieves constant update time by employing our Exponential Decay

q-MAX algorithm.

2.8 Other Related Work
In principle, while our work touches multiple applications in di-

verse fields. It is far from inclusive, and only touch a small portion

of the algorithms in each area. For example, many works do not

use the q-MAX interface, and thus cannot be improved by our algo-

rithm. Examples include passive measurement works that manage a

flow cache that monitors a subset of the flows [13, 27, 30, 33, 53, 62].

Other works, target P4 programmable switches whose program-

ming model makes identifying the minimal item challenging [64].

Thus, such algorithms avoid patterns that require reading a non-

constant portion of the memory [9, 39, 56, 64, 69], and to the best

of our knowledge none of them use the q-MAX pattern. Further

study is required to determine if the q-MAX approach itself can be

modified for such switches. Finally,most works that use shared

counters [22, 28, 31] do not follow the q-MAX interface. In prin-

ciple, such algorithms often boil down to counter arrays that are

maintained for multiple items. The exception is when such algo-

rithms maintain a list of heavy hitters [60]. In such cases, a heap

or a skiplist are often used to maintain the list, and q-MAX can

replace these data structure to increase the speed. Thus, within the

bigger perspective, we observe that theq-MAX is not very common,

but there are important applications that follow it.

3 QUANTIFYING THE POTENTIAL SPEEDUP
To estimate the possible speedup obtainable by replacing existing

data structures with an optimized q-MAX implementation, we used

a profiler to measure the amount of time spent on the data structure

update for several algorithms on a 150M-sized trace using Heap and

SkipList. The experiment result shows that, for q = 10
4
, Priority

Sampling spends 50-58% of the time in updating the data struc-

ture. Similarly, in Network-wide heavy hitters and Priority Based

Aggregation, it takes 22-28% and 18-19% accordingly. The bottle-

neck becomes worse for larger q, with up to 96% of the time spent

on updating the data structures for q = 10
7. Further, the recent

work of [59] found the heap update to be a significant bottleneck in

sketching algorithms and the Universal Monitoring sketch [60] in

particular. We conclude that optimizing the q-MAX data structure

may significantly accelerate many algorithms for which the current

method is a bottleneck.

4 THE q-MAX PROBLEM
In this sectionwe study theq-MAX problem on intervals and sliding

windows. We first define the streaming model and the q-MAX

problem in Section 4.1, and then study intervals in Section 4.2, and

sliding windows in Section 4.3.

4.1 Model and Definitions
A streamS is a list of items of the form (id,val), where at each step

a new item is appended toS. id ∈ U is an identifier taken from a

domainU, and val is a value taken from a fully ordered domain

(e.g., real or natural numbers). For sliding windows, we denote the
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window size byW and bySW a list of the lastW items inS. Given

a parameter τ ∈ [0, 1], aW ,τ -slack window is aW ′-sized sliding

windowwhose size varies betweenW (1−τ ) andW . That is, it isSW
′

for someW ′ s.t.W (1−τ ) ≤W ′ ≤W . Similarly, aW , 0-slackwindow
is simply a (W -sized) sliding window. We assume that comparison

requires O(1) time and that each item requires a single space unit.

The q-MAX problem is about processing S and upon query

listing the q maximal items in the entire stream. The (W ,q)-max

problem requires listing the q maximal items over aW sized sliding

window (SW ). Finally, the (W ,τ ,q)-max problem is about listing

the q maximal items over aW ,τ -slack window. Here, q ∈ N+ is

the number of maximal items to list. A q-MAX algorithm supports

two methods: update and query. The update method reports a new

item and returns the replaced one (which is not among the q largest

items). This item can either be one of the stored items or the current

one. The query method lists the q maximal items according to value.

This minimal interface is sufficient to implement the previously

mentioned algorithms and can be realized with a constant update

complexity. Current implementations use standard data structures

that can only be implemented in logarithmic complexity.

4.2 q-MAX on Intervals
4.2.1 q-MAX algorithms (upper bounds). Our interval algorithm
requires ⌈q(1 + γ )⌉ space and operates in O(1) worst-case time for

any constantγ . Here,γ is a space-time tradeoff parameter; the larger

γ is, the more speedup we get. Intuitively, our algorithm is based

upon the observation that finding a percentile can be done in linear

time [21]. Instead of maintaining an ordered list of q items, we

maintain a larger list of ⌈q(1 + γ )⌉ items. Then, we periodically find

a percentile where q items are above it, retain the q largest items,

and remove the rest. This operates in O(1) amortized complexity.

Intuitively, we improve the worst case update complexity to a

constant by performing the percentile calculation in small fixed

sized steps per each update. Algorithm 1 provides pseudo-code for

this process, and we explain it below.

We maintain an array of ⌈q(1 + γ )⌉ items (A) for some constant

γ > 0. A is split into two regions, pointed to by S1 and S2. The
computation takes place in iterations. At the beginning of each

iteration, the subarray pointed to by S1 contains q(1 + γ/2) items

that include the largest q. S2 points to a qγ/2 sized subarray of

items that are guaranteed not to be among the top-q and thus are

logically deleted. We interchangeably refer to S1 and S2 as sets that
contain the elements in the subarrays they point to. The algorithm

also maintains a quantity Ψ, which is initialized to −∞, that denotes
a lower bound on the q’th largest item that is currently in A. As
items arrive, those that are smaller than Ψ are surely not among

the largest q and are therefore discarded. The processing of every

item larger than Ψ is called a step. Each iteration lasts exactly qγ/2
steps, throughout which the arriving elements are inserted into the

array part of S2. The algorithm uses a global variable called steps
that tracks the progress of the iteration and denotes the number of

items inserted to S2. During the first qγ/4 steps of the iteration, and
while inserting the (larger than Ψ) arriving elements to S2, we find
the percentile for which there are q items larger or equal to in S1.
This is done by breaking the execution of the Select algorithm [21],

which requires O(q) operations for finding a percentile in an O(q)-
sized array, into qγ/4. Each such sequence of operations is called a

SelectStep(). Since the entire Select procedure requiresO(q) time, we

make O(γ−1) CPU operations per step, which is constant for any

fixed γ . At each step, after the insertion to S2, we perform a single

SelectStep(); therefore, after these qγ/4 steps we are done computing

the percentile, and set it as the new value for Ψ.
Next follows qγ/4 steps during each we perform a PivotStep() in

addition to inserting an item to S2. Here, we break a pivoting oper-

ation, which brings the largest q items in S1 (using the threshold
Ψ we computed) to the middle of A. As in the percentile computa-

tion, pivoting an O(q)-sized array takes O(q) and each PivotStep()

executes O(1) operations for fixed γ . This concludes the qγ/2 steps
of the iteration. At this point, we have the largest q items of S1 in
the middle and thus we are guaranteed that the remaining qγ/2
items of S1 are not among the maximal in the stream. At this point,

we change the positions of S1 and S2, and a new iteration begins.

Finally, our algorithm serves queries in a straightforward man-

ner; it computes the percentile of A that corresponds to the q’th
largest item and then makes another pass on A to report the max-

imal items. Figure 1 illustrates this algorithm. The main result

for q-MAX is:

Algorithm 1 q-MAX

Initialization:

A← q(1 + γ )-sized array, initialized to −∞

Ψ← −∞; s1 ← 0; s2 ← q
1: function add(id, val )
2: if val > Ψ then ▷ If larger than the admission filter

3: A[s2 + steps] ← (id, val )
4: DeamortizedStep() ▷ run O (γ −1) operations
5: function DeamortizedStep()

6: steps← steps + 1
7: if steps ≤ qγ /4 then
8: SelectStep(s1, q(1 + γ /2))
9: return
10: Ψ← q-Percentile() ▷ The return value of the Select

11: if steps ≤ qγ /2 then
12: PivotStep(s1, Ψ, q(1 + γ /2))
13: return
14: s1 ← qγ /2 − s1
15: s2 ← q − s2
16: steps = 0

17: function Query()

18: return q-Largest(A)

Theorem 1. For any γ > 0, there exists a q-MAX algorithm with
⌈q(1 + γ )⌉ space and O(γ−1) update complexity.

We now analyze the expected number of updates, for a fixed size

stream and fixed input distribution, in which the items are larger

than the thresholdΨ. Since smaller items are immediately discarded,

such updates are faster than those that changeA. This is also appar-
ent from our evaluation (see Section 6 and specifically Figure 10)

that shows that q-MAX becomes faster as the trace prolongs. Thus,

in the following, we assume that each item inS is sampled inde-

pendently from a fixed distribution D. Without loss of generality,

we assume that the items are i.i.d. distributed real numbers.
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Figure 1: An illustration of the q-MAX algorithm for q = 4 and γ = 1.5. At the beginning of the iteration (1, upper left corner),
the threshold is Ψ = 3, and only items larger than Ψ are admitted. Throughout the next qγ/2 insertions (steps), admitted items
are inserted next to S2. During the first qγ/4 insertions, we perform a Select operation that finds the percentile (Ψ) in the
q(1 + γ/2)-sized subarray pointed to by S1 such that there are q items of value at least Ψ. On the remaining qγ/4 insertions we
pivot the array such that the q largest among S1 are placed in the middle. After these steps (Subfig 2), the leftmost qγ/2 items
(Small) are effectively deleted, and we are guaranteed that the largest q are among the middle (Large) and rightmost (New)
values. The procedure now repeats (Subfig 3) where S2 points to the rightmost qγ/2 locations and S1 to the rest. Finally, after
additional qγ/2 larger than Ψ we delete the rightmost ("Small" on Subfig 4) items and a new iteration begins.

Theorem 2. Let D be some distribution on the real numbers and
assume that |S | ≥ q. The expected number of updates made by
Algorithm 1 is bounded by O(q log (|S |/q)).

Proof. We first claim that the i’th item (xi ) is added with a

probability of at most min {1, 2q/i} for any γ ≤ 2. Recall that at

each iteration we compute m – the q’th largest item in S2. This
means that at any point during the run, m is guaranteed to be one

of the q + ⌊qγ/2⌋ ≤ 2q largest items inS. Denote by Ei the event
that xi is strictly larger than m. As items are drawn independently

fromD, it follows that Pr[Ei ] ≤ 2q/i (and clearly, Pr[Ei ] ≤ 1). Thus,

the expected number of updates to Algorithm 1 is bounded by∑
i≤|S |

Pr[Ei ] ≤
∑
i≤|S |

min {1, 2q/i } ≤
2q∑
i=1

1 +

|S |∑
2q

2q/i

= 2q(1 + ln ( |S |/q) +O (1)) = O (q log ( |S |/q)),

where the middle equality follows asHz ≜
∑z
i=1 1/i = ln(z)+Θ(1)

is a bound on the i’th harmonic number. □

4.2.2 q-MAX lower bounds. Next, we study lower bounds for the

q-MAX problem. We do so by showing a reduction between q-MAX

and integer sorting. Namely, we prove that a q-MAX solution that

uses q+Ψ space and updates inO(ϕ) time implies an algorithm that

sorts ann-sized integer array inO(nΨ) space andO(nΨϕ) time. This

immediately imply that any sorting-based q-MAX that uses q+O(1)
space has Ω(logq) update time using known lower bounds. The

current state of the art for deterministic sorting algorithms runs in

O(n log logn) [8, 45], and for randomized sorting, anO(n
√
log logn)

time algorithm is known [46]. This means that any q-MAX solution

that updates in O(1) time and has (q + o(log logq))-space implies

an improvement for deterministic integer sorting, and any random-

ized algorithm with (q + o(
√
log logq))-space results in improving

the state of the art for randomized sorting algorithms. Further, a

deterministic q +O(1) space solution with o(log logq) update time

or a randomized algorithm with q +O(1) space and o(
√
log logq)

update time also means faster integer sorting. Thus, we conclude

that Algorithm 1 (that uses q(1+γ ) space and updates in worst case

O(1) time for constant γ ) is near optimal, unless there exist better

integer sorting algorithms.

Theorem 3. The existence of a deterministic (randomized) q-MAX
algorithm with q + Ψ space that updates in O(ϕ) time implies a
deterministic (randomized) integer sorting algorithm that sorts an
n-sized integer array in O(nΨϕ) time.

Proof. Let A = ⟨a1, . . . ,an⟩ denote the n-sized integer array

we wish to sort. Consider the sequence

Λ ≜ ⟨a1,a1, . . . ,a1,a2,a2 . . . ,a2, . . . ,an ,an , . . . ,an⟩ in which the

i’th element isΛi = a ⌊i/Ψ⌋ . Intuitively, we use this sequence to infer
the value of the next smallest item in the array given the element

discarded from the q-MAX solution. Notice that Λ is of size |Λ| =
nΨ. For q = nΨ, We initialize a q-MAX solutionM and insert to it

the elements of Λ one at a time. Next, letM ≜ 1+max {ai ∈ A} be
an integer that is strictly larger than any item in A. For i = 1, . . . ,n
and j = 1, . . . ,Ψ, we insertM intoM . At the end of each outer-loop

iteration (every Ψ insertions), we look at the value discarded byM
and use it to infer the next smaller integer as explained above. After

this operation is completed we successfully recovered the sorted

order of the array A. Since we fedM with 2q = 2nΨ elements, the

overall time required is O(nΨϕ). For convenience, we provide the
pseudo code of this reduction in Algorithm 2. □
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Algorithm 2 Integer sorting an n-sized array A given a q-MAX

solution

1: function Sort(Array A)
2: M ← (nΨ)-Max.init()
3: for i = 1, . . . ,n do
4: for j = 1, . . . ,Ψ do
5: M .add(Ai )

6: M ≜ 1 +max {ai ∈ A} ▷ A bound on items in A
7: for i = 1, . . . ,n do
8: for j = 1, . . . ,Ψ do
9: M .add(M)

10: Report the last replaced item as the next smallest element in A

4.3 q-MAX on Sliding Windows
In this section, we study the extension ofq-MAX to slidingwindows.

We start by explaining a known lower bound of Ω(W ) items for

q-MAX on a sliding window in Section 4.3.1. Then, we show a lower

bound of Ω
(
min

{
W ,q · τ−1

})
items for τ ,W slack windows.

4.3.1 Infeasibility of q-MAX on sliding windows. Unfortunately,
it is known that even for q = 1 (finding the maximum over a

sliding window) and a multiplicative approximation, any such

algorithm requires Ω(W ) space [32]. Thus, any sliding window

q-MAX algorithm would store Ω(W ) items at the worst case which

is prohibitively expensive for large windows. This motivates our

focus on W ,τ -slack windows that do allow efficient q-MAX al-

gorithms. Recall that in this model, the goal is to return the q
maximal items with respect to some window whose size varies

betweenW (1 − τ ) andW .

4.3.2 Lower bound for q-MAX on slack windows. We now provide a

lower bound of Ω
(
min

{
W ,q · τ−1

})
items for τ ,W windows. Such

a lower bound is interesting when q · τ−1 = o(W ). For constant τ
the bound is O(q) items which is optimal.

Theorem 4. Any algorithm that solves (W ,τ ,q)-max must store
Ω
(
min

{
W ,q · τ−1

})
items.

Proof. Clearly, one could store the entireW items window and

solve the problem. Thus, we hereafter assume that q · τ−1 = o(W )
and show an Ω(q · τ−1) lower bound. Let Q = {x0, . . . ,xz }, for
z = τ−1/2 · q, be a set of (z + 1) distinct values such that x0 ≻ x1 ≻
. . . ≻ xz . Consider the sequence:

x
2W τ−q
z x1x2 · · · xqx

2W τ−q
z xq+1xq+2 · · · x2q · · · x

2W τ−q
z · · · xz−1xz ,

which contains τ−1/2 parts, each starts with (2W τ −q) occurrences
of xz followed by the next q items of Q .

We claim that the algorithmmust keep in memory all items inQ\
{xz+1}. Assume by contradiction that there exists i ∈ {0, . . . , z − 1}
such that the algorithm does not store the item xi . Next, consider
the case where this initial sequence is followed by ⌊i/q⌋ · (2W τ )
occurrences of xz+1. This leads to a contradiction as xi is now
among the q-largest in any window of size betweenW andW +W τ .
Since the algorithm does not have xi in memory, it cannot list the

largest q items and therefore fails. Thus, the algorithm must store

|Q | − 1 items, which requires Ω
(
min

{
W ,q · τ−1

})
items. □

We note that the above proof assumes that the domain of the

input keys is of size at least z + 1. If the size of the domain is

D = O(τ−1q), one couldmaintain the set of items that are candidates

for the top-q in some future window. To make use of the slack for

reducing the space, one may use O(τ−1) bits per item and encode

just the approximate timestamp (within aW τ -additive error) in

which the item has last appeared. This approach is a variant of the

List of Possible Maxima algorithm presented in [41] and requires

O(D logτ−1)memory bits. However, networking applications often

have D ≫ τ−1q (e.g., D can be all 2
64

(srcip,dstip) pairs, or all

possible 5-tuples), which makes this approach infeasible.

4.3.3 q-MAX algorithms for slack windows (Upper bound). First, we
design a simple algorithm that solves the problem in optimal space

and O(1) update time, when D is arbitrarily large. We partition the

stream into consecutiveW τ -sized blocks and maintain a q-MAX

instance for each block. To reduce the space, we keep the instances

in a τ−1-sized cyclic buffer and only store q-MAX instances that

are contained in the current window. Whenever a block ends, we

reset the q-MAX of the oldest block, and every item updates just

the q-MAX of its block. Therefore, we get a O(q · τ−1) space algo-
rithm that updates in constant time. For queries, we propose the

Partial(t1, t2) procedure that merges all blocks between t1 and t2.
Here, a merge refers to querying the underlying q-MAX instances

and adding their top items into a q-MAX (denoted R) that is dedi-
cated to the results. Finally, by querying R we get the largest q items

in the interval (t1, t2). For finding the top q items over the entire

window we perform Partial(0,n−1), where n = τ−1 is the number

of blocks. We summarize the asymptotics of the method, whose

pseudo code appears in Algorithm 3, in the following theorem.

Algorithm 3 Basic-(q,W ,τ )-max

Initialization:

n← τ−1 ▷ Number of blocks

s ←W /n ▷ Block Size

∀ȷ = 0, . . .n − 1 : B[ȷ] ← q-max()

i ← 0

1: function Add(id,val )
2: B[⌊i/s⌋].ADD()
3: i ← (i + 1) modW
4: if (i mod s) = 0 then ▷ End of a block

5: B[i/s].Reset() ▷ Reset the oldest q-MAX

6: functionQuery()

7: return Partial(0,n − 1)

8: function Partial(t1, t2) ▷ q-MAX over blocks t1, . . . , t2
9: R ← q-max() ▷ Result q-MAX

10: for ȷ = t1, . . . , t2 do
11: Merge(R,B[ȷ]) ▷ Merges into R

12: return R.Query()

13: procedure Merge(R,R2)
14: for (id,val) ∈ R2.Query() do
15: R.Add(id,val)

Theorem 5. Algorithm 3 computes q-MAX over τ -slack windows;
usesO(q ·τ−1) space; makes updates inO(1) time; and answers queries
in O(q · τ−1) time.
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Figure 2: An illustration of the (q,W ,τ )-max algorithm (Algorithm 4) for q = 2,W = 48 and τ = 1/16. Here, c = 2 instances
of Algorithm 3 are used. The first, illustrated in green, stores a 2-max for each 3-sized block and the second, in purple, stores
a 2-max for each 12-sized block. The most recent block contains only 7, and thus W ′ = 46 is the size of the slack window.
To obtain the q-maximal items over that window, using only the green algorithm one would need to merge all sixteen green
blocks. Using the two algorithms, we can do so by merging just six blocks: the four (level-1) blocks and the two oldest green
blocks (level-3) block.

While this algorithm has optimal space and update time, its

query time is O(q(t2 − t2)) = O(q · τ−1) which is too slow when

τ is small. We now develop methods that reduce the query time

dependence onO(τ−1) without asymptotically increasing the space

or update time.

To that end, we use a parameter c ∈ N+ as a performance tradeoff

parameter. When c is large, queries are faster, but our O(c) update
time is slower. This is achieved by maintaining c separate instances
of Algorithm 3 with varying values of the slack parameter. Namely,

for the ℓ’th instance we use slack of τ ℓ/c . This means that ℓ’th

instance blocks, hereafter referred to as ℓ-blocks or level-ℓ blocks,

are nℓ = τ−(ℓ/c) in number and each reflectsW /nℓ input items.

Whenever an item arrives, it updates the q-MAX instances of all

c levels. The tricky part is the query, where we decompose the

window into non-overlapping blocks of different levels. Specifically,

the window can be expressed as the union of at most τ−1/c blocks

of each of the c levels. For answering a query, we first merge all

level-1 blocks using the Query procedure of Algorithm 3. Intu-

itively, this covers all but at most a τ−(c−ℓ)/c fraction of the items,

which can be covered using higher level blocks. For the remaining

levels, we use the Partial query to merge the additionally required

blocks. Our solution, whose pseudo code is given in Algorithm 4,

is illustrated in Figure 2.

We now state the asymptotic behavior of Algorithm 4. Observe

that for any constant c the result is a space optimal algorithm with

constant update time. In contrast, setting c =
⌈
logτ−1

⌉
gives an

algorithm withO(logτ−1) update time andO(q logτ−1) query time.

Theorem 6. For any constant c ∈ N+, Algorithm 4 solves q-MAX
over τ -slack windows; uses O(q · τ−1) space; updates in O(c) time;
and answers queries in O(q · c · τ−1/c ) time.

Algorithm 4 provides two options for the user – either have a

constant update time and a query time overhead that is polynomial

in τ−1, or (by setting c = logτ−1) have logarithmic update time

and O(q logτ−1) query time. However, it is desirable to get the

faster query time without giving up on the constant time updates.

Intuitively, the above algorithm is wasteful in the sense that many

small items update all c levels, thereby implying an Ω(c) update
time. Instead, we can update just a single q-MAX instance for most

packets. To that end, we employ a single q-MAX that resets every

W τ items. Before its reset, we query for the largest q items of

the block and feed them into all the c underlying instances of

Algorithm 3. That is, we only touch the c levels once everyW τ
items, adding the largest q in this interval. The overall work in

every such consecutive sequence ofW τ items is then O(W τ + qc),
which means an (amortized) update time ofO(1+q · τ−1c/W ), that
can be deamortized without affecting the asymptotic query time.

Finally, recall that q ·τ−1 = o(W ), which implies an asymptotic time

improvement. Further, ifW = Ω(q · τ−1 logτ−1) we set c = logτ−1

to conclude:

Theorem 7. If W = Ω(q · τ−1 logτ−1), there exists a q-MAX
algorithm for τ -slack windows that uses O(q · τ−1) space, updates in
constant time, and serves queries in O(q logτ−1) time.

4.3.4 Exact window network-wide heavy hitters. We now show how

our slack window q-MAX can be used for finding network-wide

routing-oblivious heavy hitters [18] over an exact window. That
is, while computing the maximum over an exact window requires

Ω(W ) space, finding the heavy hitters does not. Intuitively, for

heavy hitters, we are allowed an additive error in the frequency

estimations, which can be partially traded for a slack in the window

size. For example, consider finding all flows with frequencies larger

than 100 within the last 1000 items. If we compute a q-MAX over a

slack windowwhose size varies between 990 and 1000, and estimate

frequencies within an additive error of 10, we can return all items

whose size estimate is at least 80 and have no false negatives.

First, we define a “sliding window” in distributed settings. Defin-

ing the window size in time makes more sense than defining it in

packets. Thus, we assume that packets are associated with times-
tamps and define the window in time units. For example, consider

a window size of 24 hours; if τ = 1

24
, we get a slack window that

varies between 23 and 24 hours.

We use our slack solutions (Algorithm 3 or Algorithm 4) for τ =
ε/2 and utilize the estimation mechanism of [18] with a guarantee

of (ε/2,δ ) on all measurement points. With probability 1−δ , we get
an error of at mostW ε/2. The result is a sliding window algorithm

with an accuracy guarantee of (ε,δ ), where the additional error

comes from monitoring a slack window which differs from the

original window by at most W τ = W ε/2 items. The following

theorem formalizes our result for sliding window based network-

wide heavy hitters.
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Algorithm 4 (q,W ,τ )-max

Initialization: ∀ℓ = 1, . . . c :
nℓ ← τ−(ℓ/c) ▷ Number of ℓ-blocks

nℓ ← τ−(c−ℓ)/c ▷ #c-blocks in an ℓ-block

C[ℓ] ← Basic-(q,W ,τ ℓ/c )-max ▷ Level-ℓ instance

sℓ ←W /nℓ ▷ ℓ-Block Size

i ← 0

1: function add(id,val )
2: for ℓ = 1, . . . , c do
3: C[ℓ].ADD()

4: i ← (i + 1) modW ▷ Used for answering queries

5: functionQuery()

6: R ← q-max() ▷ Result Instance

▷ First, add the largest items among the 1-blocks

7: for (id,val) ∈ C[1].Query() do
8: R.Add(id,val)

9: U ← n1 − (⌊i/s1⌋ mod n1) ▷ #uncovered c-blocks
10: ℓ ← 1

11: while U > 0 do ▷ While not all blocks were covered

12: ℓ ← ℓ + 1

13: mℓ ← ⌊U /nℓ ⌋ ▷ Number of ℓ-blocks to merge

14: U ← (U mod nℓ ) ▷ Remaining c-blocks to cover

15: Iℓ ← ⌊i/sℓ ⌋ ▷ Current ℓ-block index

16: firstℓ ← (Iℓ + 1) mod nℓ
17: lastℓ ← (Iℓ +mℓ + 1) mod nℓ
18: for (id, val ) ∈ C[ℓ].Partial(firstℓ, lastℓ ) do
19: R .Add(id, val )
20: return R .Query()

Theorem 8. IfW = Ω(qε−1 log ε−1), there exists an algorithm
for W -sized window network-wide heavy hitters, that updates in
constant time, serves queries inO

(
ε−2 logδ−1 log ε−1

)
time, and uses

O
(
ε−3 logδ−1

)
space.

5 EXPONENTIAL-DECAY q-MAX
As recent data is often more important than old one, different aging

mechanisms associate current elements with higher weights than

old ones [25]. Sliding windows is one model which gives equal

weights to the lastW elements and zero weight to older ones. In

this section, we explore the exponential decay aging model [26] for

q-MAX. Specifically, for an aging parameter c ∈ (0, 1], the weight
of an item (idi ,vali ) that arrive at time i is weiдhti ≜ val · ct−i

where t is the current time. That is, whenever a new element arrives

the weight of all previous items is decreased by a factor of c . This
generalizes the standard q-MAX problem which is the special case

of c = 1 (which means all items retain their weight throughout the

measurement). The goal of Exponential-Decay q-MAX is to report

the q elements with the largest weight at the time of the query.

We propose to solve Exponential-Decay q-MAX by a reduc-

tion to the standard q-MAX algorithm. Specifically, consider the

stream S1 = (id0,val0), (id1,val1), . . . , (idi ,vali ), which is given

as input to the Exponential-Decay q-MAX. Instead of aging el-

ements as time goes, one can feed the modified stream S2 =

(id0,val0 · c
−0), (id1,val1 · c

−1), . . . , (idi ,vali · c
−i ), into a standard

q-MAX. Indeed, item i will have a larger weight than item j > i
at time t if and only if weiдhti > weiдhtj ⇐⇒ vali · c

t−i >

valj · c
t−j ⇐⇒ vali · c

−i > valj · c
−j
. However, this simplistic

reduction may be numerically unstable; specifically, computing c−i

may not be accurately representable if one uses standard floating-

point operations (e.g., consider c = 0.9 and i = 100M). Instead, we

consider applying the logarithm function on the item weights and

when processing item (idi ,vali ) adding (idi ,val
′
i ) to a standard

q-MAX solution where val ′i = log(vali · c
−i ) = log(vali ) − i log c .

By the monotonicity of the logarithm we have that weiдhti >
weiдhtj ⇐⇒ vali · c

−i > valj · c
−j ⇐⇒ val ′i > val

′
j .

5.1 Constant Time LRFU Caches
We now show that our Exponential-Decay q-MAX enables con-

stant time LRFU caches. Caching is a fundamental technique in

computer science, where a small portion of some data is kept in

memory with faster access. Realistic access patterns are not en-

tirely random and thus significant performance gains are often

obtained even with small caches.

The seminal work of [55], presents a spectrum of cache policies

that mix the two most fundamental heuristics in caching. Recency -

that speculates that recently accessed items are more likely to be

accessed in the future, and Frequency that speculates that frequently
accessed items are more likely to be accessed in the future.

An LRFU cache maintains a fixed number of entries, and each

entry is associated with a score. When needed, the cache replaces

an itemwith the minimal score with a new item. The score of item x ,
at time t is:

∑
i |idi=x c

t−i
, where idi = x means that the i’th request

was for x . The parameter c ∈ (0, 1) balances between Recency and

Frequency. Adapting q-MAX for LRFU is not straightforward as

items’ score is an aggregation over multiple requests.

Our main result here is a constant (per-element) time caching

algorithm with a cache of size q(1 + γ ) that guarantees to store the

q heaviest LRFU elements (just like a q-sized LRFU cache). The hit

ratio of our LRFU algorithm is very similar to the hit ratios of the

original q-sized LRFU cache.

We start with a simpler amortized constant time algorithm. In-

tuitively, the solution is similar to the Exponential-Decay q-MAX

from the previous section except for two changes: (i) all weights

in LRFU are 1; this means that computing the weight of element

−i log c is faster and can be done in a single floating-point multi-

plication by storing the value of log c; and (ii) there can now be

multiple requests for the same item. Therefore, we need to main-

tain an aggregate between items and their overall weight. To do

so, we denote the log-weights byw1,w2 the merged log-weight is

log(ew1 + ew2 ) which may not be numerically feasible to compute.

Instead, assuming without loss of generality thatw1 > w2, we set

the newweight tow1+log(1+e
w2−w1 ). To conclude, we add items to

q-MAX similarly to the above until the q(1+γ )-sized array is filled.

We then merge all elements that have multiple entries using the

above procedure; compute the q’th largest element; pivot the array;

and start a new iteration with q ·γ free slots (from the elements that

had the lowest log-weight). Since this maintenance operation takes

O(q) time, and it is done once every (q · γ/2)-elements iteration,

the amortized complexity is O(γ−1) which is constant for fixed γ .
Next, we design a deamortization procedure to achieve worst

case constant update time. The difficulty is that the Select algorithm

that runs the percentile algorithm may fail if we update the array
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Figure 3: Illustration of our worst-case constant time LRFU
algorithm for c = 0.8. In the first part, we compute the q’th
largest element in the union of Large andNew and pivot this
array part. We do it in a deamortized way while processing
new requests (s and k). Notice that some requests may be for
elements that are in the cache (s in this example). After the
first part is done, we have computed qγ/2 elements (Small’)
that are not among the q with the highest score, but may
have duplicates (e.g., s). During the next part, we merge the
duplicated counters (s) while processing new requests (r , j,
m, and i). If an element with a counter is requested (r in the
example) we increase its counter. Finally, in Part 3, we are
again left with a q(1 + γ/2)-sized array with no duplicates
(Large+New) and qγ/2 elements that are guaranteed not to
be the largest; then a new iteration begins.

during its operation. On the other hand, if we wait until the array is

filled then we will not find the small elements in time to start a new

iteration. To circumvent this issue, we now break each iteration

into three intervals, Large, Small, and New. At the beginning of each
iteration, we guarantee that the elements in Small are not among

the heaviest q, similarly to Algorithm 1. During the first q · γ/4
requests, we insert all elements into the array even if they exist in
the cache. This enables us to keep the Large and New constant, as

we pivot them as in the standard q-MAX. Unlike Algorithm 1, at the

end of this part we may have duplicates which we merge during the

next q · γ/4 requests. Each merge requires O(1) time and releases

a counter from New that can be reused in the current iteration.

At this time, we can safely update the Large counters. Therefore,

after these q · γ/2 requests we have a new Small array of elements

that we can evict from the cache, and a new iteration begins. This

algorithm is illustrated in Figure 3. Our LRFU algorithm operates

in worst case O(γ−1) time which is constant for any fixed γ > 0.

Further, it differs from standard cache algorithms as the number

of stored elements varies between q, and q · (1 + γ ). However, for
small γ the difference is negligible.

As LRFU is heuristic in nature, we cannot guarantee to achieve

a certain hit ratio. Instead, we consider the following property of

LRFU; let Ct be the LRFU cache at time t , and for x ∈ Ct let tx be

the time at which it was admitted into the cache. LRFU associates

x with the weight

∑
i ∈[tx ,t ] |idi=x c

i
and guarantees that the q − 1

elements with the smallest weight will not be evicted. Our q-MAX
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Figure 4: CPU Throughput of q-MAX as function of γ on a
randomly generated stream of 150M numbers.

algorithm provides a similar guarantee: the top q elements (by

weight) in the cache will not be evicted at any time.

6 EVALUATION
The evaluation of q-MAX is performed on a 16 CPU server running

64-bit Ubuntu-16.04.1 with 128GB RAM, 32KB L1 cache, 256KB L2

cache, and 25.6MB L3 cache. Our implementation is in C++ and is

available as open source [3]. We also evaluate q-MAX for flows in a

DPDK enabled OVS platform. To do so, wemodify the datapath code

of OVS, to record the source IP address, packet ID, and packet size of

selected packets packet.We build one sharedmemory block for each

PMD thread of OVS and copy the recorded information into the

corresponding shared memory blocks. We also implement a user-

space program that can read the packet information from shared

memory blocks. Then we implement q-MAX and other algorithms

to process those packet information.

We used four traces in the evaluation: (1) CAIDA’16: CAIDA

Internet Traces from “Equinix-Chicago” in 2016 [5], (2) CAIDA’18:

CAIDA Internet Traces from “Equinix-NewYork” in 2018 [6], (3)

UNIV1: data center trace [19], and (4) P1-ARC: "P1.lis" Cache access

trace [61], for evaluating caches. For evaluating our algorithms

on the traces, we used the decimal representation of the IP source

address of TCP and UDP packets as the key and total length field in

the IP header as key. The evaluation considers the first 5 minutes

of CAIDA’16 and CAIDA’18 traces and all of the UNIV1 trace. We

evaluate a similar error range (≈ 0.3% − 3%) to previous works [7,

12, 49]. We ran each data point ten times, and we report the mean

and 99% confidence intervals according to Student’s t-test.

6.1 The Effect of γ on CPU Throughput
Intuitively, as we increase γ the q-MAX algorithm requires more

space, but the maintenance operations are shorter. Figure 4 depicts

CPU throughput in Millions of Packets Per Second (MPPS) as func-
tion of γ for various reservoir sizes (q) over a randomly generated

streams of numbers. Indeed, γ has a significant impact on CPU
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Figure 6: CPU Throughput of q-MAX (γ = 0.1) vs Heap and
SkipList as function of the trace length with varying q.

γ 2.5% 5% 10% 25% 50% 100% 200%

Min Speedup vs. Heap ×0.73 ×1.66 ×1.77 ×1.88 ×1.89 ×1.89 ×1.89

Max Speedup vs. Heap ×1.34 ×3.16 ×7.11 ×12.88 ×17.16 ×21.22 ×23.39

Min Speedup vs. SkipList ×1.28 ×2.22 ×2.37 ×2.51 ×2.53 ×2.53 ×2.54

Max Speedup vs. SkipList ×4.01 ×11.71 ×26.28 ×47.63 ×63.45 ×78.46 ×86.48

Table 1: Minimal and maximal speedups of q-MAX com-
pared to Heap and SkipList for each value of γ .

throughput. For q ≤ 10
4
the performance is dominated by the reser-

voir size q. However, as q get larger the solution becomes less cache

resident which makes it slower for large γ values.

In order to be able to compare the results to the alternatives, we

illustrate the update speed of the Heap and Skiplist algorithms (that

have no γ parameter). As illustrated, q-MAX can be faster than the

Heap and Skiplist alternatives. Notice that the break even point

is around γ = 0.025 = 2
−5.3

for various q’s. That is, we already
achieve speedup when increasing the memory by as little as 2.5%,

while 5% extra memory often doubles the throughout! Interestingly,

q-MAX exposes an interesting trade-off, we canmarginally increase

the memory and benefit from asymptotic, and empirical speedup.

Table 1 shows the range of improvement of q-MAX for a given γ .

6.2 CPU Throughput of q-MAX algorithm vs.
Current Algorithms

Figure 5 compares the q-MAX algorithm to optimized versions of a

Heap and a SkipList based algorithms. The Heap implementation

is based on the standard C++ algorithm library (using C++11, g++

version 5.4.0, and STD library version 6.0.4). The SkipList imple-

mentation, as a linked-list of elements with pointers for the various

levels, is based on [66] and [4]. As can be observed, for all values of

q with γ ≥ 0.025 the q-MAX is at least as fast as the other solutions.

In some settings with only extra 5% memory, it achieves speedups
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Figure 7: CPUThroughput of Exponential Decayq-MAX (for
c = 0.75) as function of γ on a randomly generated stream of
150M numbers.

of up to ×3 and ×11 compared to Heap and SkipList accordingly.

For γ = 0.025, q-MAX’s performs more percentile calculations but

is still comparable to other solutions.

Figure 6 shows the CPU throughput ofq-MAX,Heap and SkipList

throughout the trace. All implementations accelerate over the trace

as new items are less likely to be included within the topq. However,
q-MAX is considerably faster than the alternatives. Also notice, that

increasing the reservoir size (q) makes all algorithms considerably

slower due to cache locality issues.

6.3 Exponential Decay q-MAX
Figure 7 shows the throughput of our Exponential Decay q-MAX.

As expected, increasing γ improves the throughput. In this case, the

break even point happens than for larger γ than in (plain) q-MAX

(see Figure 5). This is explained as the need to age counters, dimin-

ishes some of the returns from better maintenance of the reservoir.

6.4 Applications’ CPU Throughput
Next, we implement Priority Sampling and Priority Based Aggrega-

tion using Heap, SkipList, and our q-MAX. In network-wide heavy

hitters, we used the released open source. We emphasize that we

use the exact same implementation for all alternatives and only

replace the Heap/Skiplist with our q-MAX.

Subfigures 8a and 8b depict the throughput of Priority Sam-

pling for three traces. Note that q-MAX increases space by ≈ 5%

to improve the throughput by up to ×1.84 when compared with

Heap-based implementation and up to ×3.89 when compared with

SkipList-based implementation.

Subfigures 8c and 8d depict the throughput of network-wide

heavy hitters [18]. As a benchmark, we used the open-source code

released by the paper’s authors [2]. Note that as the measurement

in this application is routing oblivious, the result of the computa-

tion only depends on the traffic distribution and not the network

topology or routing. Notice that q-MAX, with γ = 5%, improves
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Figure 8: CPU throughput of various applications when im-
plemented using q-MAX, Heap and SkipList.

throughput by up to ×4 compared to the original (Heap) imple-

mentation, and by up to ×11.7 compared to a SkipList based im-

plementation. Subfigures 8e and 8f depict the throughput of Pri-

ority Based Aggregation [38] in three real traces, when varying

between Heap, SkipList and q-MAX implementations. Note that

q-MAX implementations are faster and achieve a speedup of up to

×5.76 and ×875 compared to SkipList and Heap accordingly with

γ = 0.05. Here, Heap is quite slow as the standard C++ library

does not support value updates or sifts, which makes the update

operation run in O(q) time.

Figure 9 depicts the throughput of LRFU algorithm [55]. As

can be observed, our q-MAX approach is up to ×4.13 faster than

standard LRFU. For small caches (q = 10
4
) we require a slightly

largeγ to outperform the benchmark. However, in large caches (q =
10

5, 106) we achieve over ×3.93 speedup even with γ = 0.05 which

renders our algorithm practical. Also, here the Heap requires O(q)
time per update operation. Table 2 shows the hit ratio of q-MAX

based LRFU algorithm compared to the original LRFU algorithm

with q and q(1 + γ ) entries. The hit ratio of q-MAX based LRFU

cache is better than the original LRFU cache and slightly lower than

a LRFU cache of size q(1 + γ ). For a large enough cache (q ≥ 10
5
)

all algorithms achieve a hit rate of 94.7%.
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Figure 9: Throughput (Million Requests Per Second) of an
LRFU cache (c = 0.75) which is implemented using q-MAX,
Heap and SkipList on the P1 trace [61].

γ value Algorithm Hit Ratio

− q-sized LRFU 51.6%

10%

q-MAX based LRFU 53.1%

q(1 + γ )-sized LRFU 54.6%

50%

q-MAX based LRFU 58.9%

q(1 + γ )-sized LRFU 64.4%

100%

q-MAX based LRFU 65.4%

q(1 + γ )-sized LRFU 73.3%

Table 2: The hit ratio ofq-MAX-based LRFU compared to the
original LRFU algorithm with q = 10

4, and q(1 + γ ) entries
on P1-ARC trace (for c = 0.75). Our algorithm operates in
O(1) time while LRFU in O(logq).

6.5 Sliding Windows
Figure 10 presents CPU throughput of the q-MAX and the sliding

q-MAX algorithms, varying reservoir sizes q in multiple points

throughout a 150M long trace of random numbers. As expected, for

theq-MAX algorithmwe see a gradual increase in the throughput as

the trace progresses. This is due to the fact that the minimum bound

of the q-maximal values gradually increases, causing more values

to be ignored. In contrast, the throughput of the sliding q-MAX

algorithm is constant throughout the trace, as the algorithm refers

to a window of at mostW numbers.
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Figure 10: CPU Throughput of q-MAX vs. sliding windows
q-MAX (γ = 0.1, τ = 1) as function of the trace length with
varying values of q.

In Figure 11 we evaluate the impact of the slack parameter (τ ) on
the throughput of the sliding q-MAX algorithm, for various γ and
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Figure 11: CPU throughput for sliding window q-MAX as
function of τ for various values of W and γ on a random
stream of 150M numbers and q = 10

6.

W values. Notice that: (i) increasing γ improves the throughput. (ii)

large τ means higher throughput due to lower memory consump-

tion. (iii) LargerW means higher throughput as fewer items are

added to the sliding q-MAX.

6.6 Open vSwitch Integration
Next, we evaluateq-MAX and other algorithms on theOpen vSwitch

(OVS) platform. This evaluation shows that our solution is readily

deployable in existing systems and that our solution could improve

the measurement throughput by replacing the current data struc-

tures with, the faster,q-MAX. First, we run our evaluation with

10Gbps traffic, composed of minimal sized packets to stress-test

our system. Figure 12 shows the OVS mean throughput (and the

standard deviation as error bars) for Heap, SkipList, and q-MAX

compared to the vanilla OVS that does not run additional algo-

rithms. As can be observed, for q = 10
4
the Heap, and q-MAX do

not restrict the OVS throughput, while the SkipList reduces the

throughput. When increasing q further, the Heap gradually reduces

the OVS throughput, while the q-MAX algorithms keep up with the

OVS well until 10
7
. Figure 13 provides similar results, and shows

that q-MAX keeps up with the OVS even for small values of γ .
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Figure 12: Throughput of q-MAX as function of γ on a ran-
domly generated stream of 150M numbers.
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Figure 13: Throughput for q-MAX, Heap and
SkipList as function of q on a randomly generated
stream of 150M numbers.

Next, we run our evaluation with 10Gbps traffic, composed of

real traffic traces, to evaluate the impact of adding q-MAX and

other algorithms upon OVS in real measurement applications. Sub-

figure 14a and 14b show the achieved throughput for OVS without

measurement, and OVS that performs Priority Sampling with differ-

ent implementations. As can be observed, q-MAX implementations

are faster and result in up to ×2.5 better throughput, the benefit

is larger the more we increase q. Specifically, the overheads of

performing Priority Sampling in OVS is only 6.1% with q-MAX

compared to 60.1% with the best alternative.
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Figure 14: The throughput of Priority Sampling and update
throughput of Network-Wide Heavy Hitters using q-MAX,
Heap and SkipList on 10G link.

Subfigures 14c and 14d show the throughput impact of running

network-wide heavy hitters [18] on OVS. Note that (i) q-MAX

implementations attain higher OVS throughput, (ii) q-MAX is es-

pecially needed for q = 10
7
, where we achieve a throughput im-

provement of up to ×2.41 compared to the best alternative. q = 10
7

corresponds to dedicating about 100MB of space to measurement

which is reasonable given today’s architecture. Specifically, the

overheads of performing network-wide heavy hitters in OVS is at

most 5.0% with q-MAX compared to 41.6% with the best alternative.



q-MAX: A Unified Scheme for Improving Network Measurement Throughput IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

2−6 2−5 2−4 2−3 2−2 2−1 20

Performance parameter (γ)
0

10

20

30

40

OV
S 

Th
ro

ug
hp

ut
 [G

bp
s]

OVS
Heap
SkipList
q-MAX

(a) q = 10
4

2−6 2−5 2−4 2−3 2−2 2−1 20

Performance parameter (γ)
0

10

20

30

40

OV
S 

Th
ro

ug
hp

ut
 [G

bp
s]

OVS
Heap
SkipList
q-MAX

(b) q = 10
5

2−6 2−5 2−4 2−3 2−2 2−1 20

Performance parameter (γ)
0

10

20

30

40

OV
S 

Th
ro

ug
hp

ut
 [G

bp
s]

OVS
Heap
SkipList
q-MAX

(c) q = 10
6

2−6 2−5 2−4 2−3 2−2 2−1 20

Performance parameter (γ)
0

10

20

30

40

OV
S 

Th
ro

ug
hp

ut
 [G

bp
s]

OVS
Heap
SkipList
q-MAX

(d) q = 10
7

Figure 15: Throughput of q-MAX as function of γ on a ran-
domly generated stream of 150M numbers on a 40G link.

6.6.1 Experiments with 40Gbps Open vSwitch. In this appendix, we

discuss the applicability of our results for 40G with real-sized pack-

ets. That is, unlike the 10G experiments, we are not using packets

of minimal size but rather actual sized packets taken as the average

packet size in the Univ1 trace. As depicted in figures 15 and 16, all

algorithms can meet line rate for q = 10
4
and q = 10

5
. However,

for q = 10
6
, Heap imposes a throughput degradation of nearly 15%

while Skiplist reduces it by 41%. In contrast, q-MAX has a minimal

impact of 2.9% with γ = 0.25. For q = 10
7
, Heap and Skiplist fail

completely and do not even get to 10Gbps. q-MAX, with double the

space (γ = 1), achieves 36Gbps, less than 8% lower than OVS with

nomeasurement. Finally, evaluate the performance of measurement

applications in 40Gbps OVS deployment. As shown in Figure 17,

q-MAX enables line-rate measurement for q = 10
6
, and is the only

solution able to achieve acceptable throughput for q = 10
7
.
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Figure 16: Throughput for q-MAX, Heap and SkipList as
function of size (q) on a randomly generated stream of 150M
numbers on a 40G link.
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Figure 17: The throughput of Priority Sampling and update
throughput of Network-Wide Heavy Hitters using q-MAX,
Heap and SkipList on 40G link.

7 DISCUSSION
Our work introduces constant time algorithms to the fundamental

problem of maintaining the q largest numbers in a stream. Main-

taining the q largest numbers occurs in numerous networking ap-

plications that use standard logarithmic data structures such as

heaps, and skip lists. Thus, our work reduces the update complexity

of measurement applications that relay on this pattern including

(1) Network-wide heavy hitters [18]; (2) Priority Sampling [37]; (3)

Priority-Based Aggregation [38]; (4) Bottom-k sketches [24]; and

(5) the universal monitoring sketch [60]. Our extensive evaluation

shows that q-MAX is faster than heaps and skiplists, and that us-

ing q-MAX offers a speedup for diverse network application, and

facilitate line speed processing in Open vSwitch. Beyond network

algorithms, our work also reduces the complexity of the well known

LRFU algorithm to a constant [55].

We hope that application designers will consider our q-MAX

solutions when applicable, and we released an open-source library

to facilitate future use of our algorithms. As future work, we suggest

exploring how a q-MAX like solution could be implemented on

programmable switches. Implementing a heap on such switches

is difficult and perhaps a q-MAX algorithm would enable other

measurement algorithms.
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