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Modern network telemetry systems collect and analyze massive amounts of raw data in a space efficient

manner. These require advanced capabilities such as drill down queries that allow iterative refinement of the

search space. We present a first integral solution that (i) enables multiple measurement tasks inside the same

data structure, (ii) supports specifying the time frame of interest as part of its queries, and (iii) is sketch-based
and thus space efficient. Namely, our approach allows the user to define both the measurement task (e.g.,

heavy hitters, entropy estimation, count distinct, etc.) and the time frame of relevance (e.g., 5PM-6PM) at

query time. Our approach provides accuracy guarantees and is the only space-efficient solution that offers

such capabilities. Finally, we demonstrate how our system can be used for accurately pinpointing the start of

a realistic DDoS attack.
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1 INTRODUCTION
Network monitoring is at the heart of many networking protocols and network functions, such as

traffic engineering [14], load balanced routing [53, 66], attack and anomaly detection [12, 33, 55, 62],

and forensic analysis [46, 63]. Over the years, a large number of metrics have been defined, including

per-flow frequency [32, 65], heavy hitter detection [11, 28], distinct heavy hitters [35], cardinality
estimation [27, 37, 41, 42], change detection [39], entropy estimation [6, 59], quantiles [44, 45, 67] and
more. It is often infeasible to compute these statistics at line-rate due to limited memory and comput-

ing resources on network devices. Thus, approximate results are usually a reasonable choice [65].

In particular, sketches for the L2 norm can efficiently estimate all the above measurement tasks.

Further, the seminal UnivMon work [51] captures all these metrics within a single L2-norm based

sketch.
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Fig. 1. The impact of a DDoS attack on the Distinct Count (Green), and the Entropy (Blue) metrics.

The current network conditions are typically more significant for network applications than old

historical data. For example, in Figure 1 an attack detection application may wish to identify the

beginning and the end of a DDoS attack. Such detection is possible by monitoring the number of

distinct flows, or the Entropy, and by identifying a significant change in these metrics. Yet, such an

attack cannot be detected if the frame of reference is too big. The sliding window model [6, 8, 30]

maintains the measurement with respect to a fixed-sized window of streamed data.

However, it is unclear what the ’right’ window size is, and once the window size is determined we

have no visibility into smaller intervals contained within that window. For example, measurement

over a 1-minute window may fail to detect a sub-second pattern (e.g., a microburst [26]).

Further, in typical network security scenarios, such as a SIEM-SOC setting, whenever there is a

suspicion for a network anomaly, analyst teams must review long logs of recorded data. Generating

these logs requires tremendous amounts of storage, whose accumulated maintenance costs are

mounting. Worse yet, during an attack event, analysts need to manually scrutinize the logs when

they scramble to identify the attack and offer counter-measures quickly. Hence, the ability to

automatically pinpoint the beginnings and endings of anomaly events is desired. Such an ability

allows log files to be pruned only to maintain important events, and analysts can be rapidly directed

to the relevant parts of the log files when needed. Another benefit of automatic pinpointing of such

beginnings and endings of unusual behavior is in unsupervised learning; such real-time pinpointing

can give continuous feedback to the learning process.

In this context, the Interval Query (IQ) [9, 60] model generalizes sliding window to provide

visibility to any interval inside the window. In the IQ model, the user provides the interval of

reference at query time, and the metric is estimated over that interval. It is suitable to accurately

pinpoint the beginning of an attack, or an important traffic pattern, and for identifying short

patterns. For instance, we can use the IQ model to perform drill-down queries and detect a small

interval that contains the start of the attack (in Figure 1).

In this paper, we present a measurement framework that supports queries with L2 guarantees in
the IQ model. To the best of our knowledge, our work is the first to study the IQ model with L2
guarantees. By supporting L2, we can port general sketches (e.g., UnivMon [51]), that support a

variety of measurement queries. Previous work [9, 60] suggests algorithms that are limited to L1
guarantee. In particular, this limitation prevents existing approaches from supporting the Entropy

and Distinct flow count which are useful for attack detection.

In designing our algorithms, we explore the Exponential Histogram (EH) [30] and Smooth His-

togram (SH) [22] in the IQmodel. We gradually build our framework with increasingly sophisticated

algorithms that gradually improve on each other. Such a presentation exposes the design space,

trade-offs, and challenges in developing such a system. In particular, we design new algorithms in
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the IQ model for L2 heavy hitters and extend them to support a broader class of functions with

UnivMon [51].

Next, we study an attack localization problem that pinpoints the beginning of a network anomaly

or an attack, using our framework. While the ability to automatically detect such anomalies is not

new, the ability to automatically localize the attack with more fine-grained beginning and end is

novel. Our algorithm relies on interval queries on the entropy of the flows, and our framework is

the first to serve such queries in the IQ model.

In summary, we make the following contributions:

• We introduce the first set of measurement algorithms with an L2 estimation guarantee in the IQ

model, using sub-linear space.

• We extend a universal sketch (UnivMon [51]) to support a wide variety of queries in the IQ

model, e.g., L2 heavy hitters, entropy estimation, and distinct flow counting.

• We exemplify the usefulness of our framework by introducing an attack localization algorithm

that automatically pinpoints the beginning of a traffic anomaly.

• We evaluate our framework using a set of real-world Internet traces [2], and demonstrate good

accuracy using acceptable memory space. In particular, we evaluate our attack localization

algorithm by simulating a DDoS attack scenario within a real-world Internet trace. We showcase

the ability to pinpoint the beginning of the attack automatically. To the best of our knowledge,

we are the first to provide such a capability.

Paper Roadmap: The rest of this paper is organized as follows: The basic terminology and

problem statement are provided in Section 2. We present our novel algorithms with their proofs

and analysis in Section 3. The evaluation results are described in Section 4. We conclude with a

discussion in Section 5.

2 BACKGROUND
2.1 Streaming Computation Models
Streaming Model: The streaming model as a computational model for processing large data

sets was first formally introduced in [5]. It targets the applications where the data items arrive

sequentially in a streaming fashion, where each item can only be accessed at arrival time. More

formally, given a stream of updates S = {s1, . . . , sm}, where si ∈ {1, . . . ,N }, the goal is to compute

a target function F (S) while using space which is sublinear inm and N . Space constraints often

render the exact computation of a function infeasible; instead, streaming algorithms usually provide

an (ε, δ )-approximation scheme. That is, randomized algorithms that return F̂ (S) ∈ (1 ± ε)F (S)
with probability at least 1 − δ . The stream of updates (S) can be a list of updates per time unit

for time-based intervals (or a single update per time unit for packet-based intervals). The target

function F can be the frequency of a certain identifier (e.g., per-flow frequency), the distinct count

of identifiers, the entropy, and so forth. The notation F (S) refers to calculating the function F over

the entire stream of updates (S), while the notation S(t1, t2) is a substream of updates that starts at

t1 and ends at t2. For more details on the streaming model and its variations refer to [4, 57].

Sliding Window Model: In many applications, the stream of data is considered to be infi-

nite, and a target function should be computed only on the last n updates and “forget” older

ones. The Sliding Window model [30] addresses the pool of such problems. Formally, given a

stream of updates S = {s1, . . . , st , . . .} and si ∈ {1, . . . ,N }, the goal of a sliding window al-

gorithm is to report F (t − n, t) = F (S(t − n, t)) = F ({st−n, . . . , st }) at any given moment t . Simi-

larly, the algorithm should use space sublinear in n and N and follow the approximation scheme
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Table 1. Notations and abbreviations.

N dictionary size SW Sliding Window model

n window size IQ Interval Query model

(t1, t2) query interval SH Smooth Histograms

t current moment EH Exponential Histograms

fi frequency of i

F̂ (t − n, t) ∈ (1 ± ε)F (t − n, t). The numbers t , t − n are natural numbers that represent the start

and end of the interval in some units. The unit can be a time unit (e.g., seconds) or simply packets.

Interval Query Model: In this work, we address typical measurement tasks in the IQ model.

First considered in [49], its goal is estimating a function over the interval (t1, t2) (of the stream S)
that is specified at query time. Given a stream of updates S , the goal of an algorithm in the IQ model

is to compute F (t1, t2) = F (S(t1, t2)) at any moment t , and any given interval (t1, t2) ⊂ (t − n, t),
while using space sublinear in n and N . In section 3.1, we show that achieving approximation

F̂ (t1, t2) = (1 ± ε)F (t1, t2) is infeasible for some functions as it requires Ω(n) bits of memory. In this

paper, we call an IQ algorithm (ε, δ )-approximate if it returns F̂ (t1, t2) = F (t1, t2) ± εF (t1, t) with
probability at least 1 − δ . That is, the allowed error is an ϵ fraction of the value of the function

when applied on the suffix (t1, t) and not only on (t1, t2). Specifically, this means that if t2 is the
current time, we get a multiplicative (1 + ε)-approximation for a t1-sized window whose size is

given at query time.

2.2 L1 and L2 Heavy Hitters
Finding heavy hitters in streaming data is a well-studied problem in the analysis of large datasets;

optimal or nearly optimal results were achieved in different models [15–17, 21, 25, 29, 52, 54, 67].

In this paper, we give a brief overview of the heavy hitters problem, including the formal problem

statement and major differences between L1 and L2 settings. For more details on the problem, please

refer to [4, 28, 57].

Item i is an (ε, Lp )-heavy hitter in the stream S = {si }
m
i=1, si ∈ [N ] = {1, . . . ,N }, if fi ≥ εLp (f ),

where fi = #{j |sj = i} is the number of occurrences of item i in the stream S , and Lp (f ) =
p
√∑

f
p
i

is the Lp norm of frequency vector f , and j-th coordinate in the vector equals fj . An approximation

algorithm for Lp heavy hitters returns all the items that appear at least εLp times and no item

that appears less than
ε
2
Lp times and errs with probability at most δ . It was shown in [7, 24] that

for p > 2 any algorithm will require the space at least polynomial in m and N . Therefore, the

central interest is around finding L1 and L2 heavy hitters. Note that finding L2 is provably more

difficult compared to L1 heavy hitters. While to be an (ε, L1)-heavy hitter an item needs to appear

in a constant fraction of the stream updates, in some cases to be an (ε, L2)-heavy hitter the item

can appear just in O(1/
√
N ) fraction of updates. Note that to catch such L1 heavy hitters using

uniform sampling, one will need to sample at most O(1/ε2) items while catching L2 heavy hitters

will require the number of samples to be polynomial in N . Moreover, any L2 algorithm can find

all L1 heavy hitters while the opposite is not always the case. The L1 heavy hitters problem has

optimal algorithms in both the cash register [52, 54] and turnstile [29] streaming models and was

considered in both sliding windows [30] and Interval Query [9] computational models. The L2
heavy hitters problem has tight results for both cash register [17] and turnstile [25] streaming

models.

Recent results on L2 heavy hitters in the sliding window were shown to be space optimal [21];

however, to the best of our knowledge, the problem has not been considered in the Interval Query
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EH

tt − n

BkB4B3B2B1

SH

A1 A2 A3 A4

Ak

Fig. 2. Interval (bucket) structure for EH and SH.

model. In this work, we consider the following approximation L2 heavy hitters problem in the

Interval Query model.

Definition 2.1 ((ε, L2)-heavy hitters problem in IQ). For 0 < ε < 1 and a query (t1, t2) ⊆ (t − n, t)
given at time t , output a set of itemsT ⊂ [N ], such thatT contains all items with fi (t1, t2) ≥ εL2(t1, t)
and no items with fi (t1, t2) ≤

ε
2
L2(t1, t).

Definition 2.1 is a natural extension of heavy hitters to the IQ model but the error parameter

(ϵ) applies to L2(t1, t). In other words, the error is proportional to the L2 norm over a t1 sized
window, regardless of the selected interval within that window. While we may want to apply ϵ
to L2(t1, t2), we cannot do so in sublinear space (see Theorem 3.1). The error definition implies

that for a given ϵ we may fail to detect any heavy hitter when the interval is too small. That is,

when we reduce ϵ we gain the ability to monitor shorter intervals. In [64] authors suggest a similar

model but approximate the function F (t1, t2) with a mixture of relative εF (t1, t2) and additive ∆
error components. For the sake of completeness we compare our results with [64] in Appendix B.

2.3 Sliding Window Frameworks
There is a strong connection between the Interval Query (IQ) and Sliding Window (SW) models:

any algorithm that solves the problem in the IQ model can answer SW queries as well; one only

needs to query the largest permitted interval, i.e., (t1, t2) = (t − n,n). Therefore, we expect the
current SW approaches to be useful for understanding the IQ model. Further, we introduce some

background on SW and (ε, L2)-heavy hitters algorithms in it.

Currently, two general SW frameworks are known: Exponential Histogram [30] and Smooth

Histogram [22]. We now provide a brief overview of the core techniques of those frameworks.

2.3.1 Exponential Histograms (EH). In [30], the authors suggest to break the sliding window

W = (t − n,n) into a sequence of k non-overlapping intervals B1,B2, . . . ,Bk , as depicted in Fig. 2.

WindowW is covered by ∪k
i=1Bi , and contains all Bi except the first one. Then, if a target function

f admits a composable sketch, maintaining such a sketch on each bucket can provide us with

an estimator for f on a windowW ′ = ∪k
i=2Bi . Note that f (W ) is “sandwiched” between f (W ′)

and f (B1 ∪W ′). Therefore, a careful choice of each bucket endpoints provides control over the

difference between f (W ) and f (W ′), thereby making f (W ′) a good estimator for f (W ). As the

window slides, new buckets are introduced, expired buckets are deleted, and buckets in between

are merged. The EH approach admits non-negative, polynomially bounded functions f which in

turn enable a composable sketch and are weakly additive, i.e., ∃Cf ≥ 1, such that ∀S1, S2:

f (S1) + f (S2) ≤ f (S1 ∪ S2) ≤ Cf (f (S1) + f (S2)).
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tt − n t1 t2q

BkB4B3B2B1

Fig. 3. Interval query in the prism of EH.

For such functions, [30] can ensure that k = O(C2

f logn) by maintaining two invariants:

f (Bj ) ≤
Cf

k

k∑
i=j+1

f (Bi ) and f (Bj−1) + f (Bj ) ≥
1

k

k∑
i=j+1

f (Bi )

.

2.3.2 Smooth Histograms (SH). In [22], the authors relax the weak additivity to more general

property of smoothness:

∃0 < β ≤ α ≤ ε ∀S1, S2, S3 : (1 − β)f (S1 ∪ S2) ≤ f (S2) ⇒ (1 − α)f (S1 ∪ S2 ∪ S3) ≤ f (S2 ∪ S3).

Additionally, in SH buckets A1, . . . ,Ak overlap; therefore, [22] extends the class of admitted target

functions even further by relaxing the composability requirement. Similarly to [30], f (W ) is

“sandwiched” between f (A1) and f (A2), see Fig. 2. The memory overhead is O( 1β logn) and the

maintained invariants are (1 − α)f (Ai ) ≤ f (Ai+1) and f (Ai+2) < (1 − β)f (Ai ).

2.4 Interval queries on EH and SH
The IQ model is a generalization of the SW model, with additional drill down into the monitoring

window. However, in this paper, we suggest using similar building blocks as the SW model. To

illustrate the idea we refer the reader to Fig. 3 which depicts query interval q = (t1, t2) and buckets of
Exponential Histogram with window of size n. Note that q is ”sandwiched” between B2∪B3∪B4 and

B3, while f (∪k
j=2Bj ) = (1± ε)f (t1, t) and f (∪k

j=4Bj ) = (1± ε)f (t2, t). Intuitively, one can expect that

f (t1, t2) can be approximated by f (B2 ∪ B3) with an additive error of ±ε f (t1, t). A similar approach

can be applied to Smooth Histograms if the sketches preserve approximation upon subtraction. We

later show this formally.

3 INTERVAL ALGORITHMS
In this section, we introduce our algorithms that handle interval queries. We begin by giving a

lower bound on the required number of memory bits that is needed for any algorithm in the IQ

model. Then, we utilize the tools of Exponential Histogram and Smooth Histogram to design our L2
Heavy Hitter algorithms in the IQ model. We start our first L2 heavy hitter algorithm by adopting

SH into the IQ model and gradually improve it with EH and enhanced SH. After careful analysis,

we extend our approach to support a broad spectrum of functions (that UnivMon supports) and

time-based interval queries.

3.1 Lower bound
Definition 2.1 suggests that our algorithm can have an error proportional to t − t1, i.e., all elements

from the start of the interval and until the current time. Intuitively, one could hope for an algorithm

whose error only depends on the interval elements themselves (i.e., on L2(t1, t2)). However, the
following lower bound shows that no such sublinear algorithm exists, which motivates our problem

goal.

Theorem 3.1. Any algorithm which maintains a sketch over the stream and at any moment t :
∀t1, t2 ∈ (t − n, t) outputs L̂2(t1, t2) = (1 ± ε)L2(t1, t2) requires Ω(n) bits of memory.
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Proof. The proof uses a reduction from the INDEX problem in communication complexity. Alice

is given a string x = {0, 1}n and Bob gets an index k ∈ {1, . . . ,n}. Alice sends a message to Bob,

and he should report the value of xk . Bob can err with probability at most δ . A known lower bound

on the size of the message, even for randomized algorithms, is Ω(n) [47].
Suppose there exists an algorithm that maintains a sketch over the stream and at any moment t ,

for any interval (t1, t2) ⊂ (t − n, t), outputs L̂2(t1, t2) = (1 ± ε)L2(t1, t2), while using only o(n) bits of
space. Such an algorithm can distinguish between L2 and L2(1+3ε); denote p = (1+3ε)2. In this case,
Alice encodes the string x as a stream of updates f (x1), f (x2), . . . , f (xn), where f (0) = 1, . . . , 1 and
f (1) = 1, 2, . . . ,p with both consisting of p updates. Therefore, the entire stream has length pn,

L2(f (0)) =
√
p, and L2(f (1)) > p. Hence,

L2(f (1))
L2(f (0))

>
√
p and the algorithm can distinguish them.

After running the stream through the algorithm, Alice sends the content of the data structure to

Bob. Bob queries interval (t − pn + p(k − 1), t − pn + pk) and due to approximation guarantees of

the algorithm can infer whether xk = 0 or 1. Therefore the INDEX problem was resolved with a

message size of o(n) bits, which contradicts the Ω(n) lower bound. □

3.2 Smooth Histogram based algorithm
Braverman, Gelles, and Ostrovsky, in [20], presented the first L2 heavy hitter algorithm in the SW

model. They apply the SH framework described earlier to get a (1 + ε
2
)-approximation of L2 norm.

In addition, each bucket of the SH maintains an instance of the Count Sketch algorithm [25].

To understand the underlying intuition, refer to Figure 2. If item i is at least (ε, L2)-heavy on the

window (t −n, t), then it must have appeared at least
ε
2
L2(t −n,n) times in the bucketA2, otherwise

L2(A2) > (1 − ε
2
)L2(t − n, t), which contradicts to the guarantee of the SH for L2. Therefore, this

item will be detected and reported by the Count Sketch algorithm associated with the bucket A2.

SH

tt − n t1 t2

a1 a2

A1 A2 A3 A4

Ak

Fig. 4. Query intuition for the Algorithm 1.

Our algorithm utilizes a similar technique and maintains:

(1) SH for L2 with (α, β) =
(
ε2
2
7
, ε4
2
15

)
.

(2) Count Sketch on each bucket of SH .

Later we will show that SH for L2 with given (α, β) for any (t1, t2) returns L2(t1, t2) ±
ε
2
L2(t1, t).

Then, using similar argument, Count Sketch will detect all items heavy on the interval (t1, t2). Next
we will go over the query process depicted on Figure 4. When querying with an interval (t1, t2), our
algorithm finds the largest SH suffix (a1, t) contained in (t1, t) and the largest suffix (a2, t) contained
in (t2, t). It then calculates Count Sketch of interval (a1,a2) as the difference of two Count Sketches:
(a1, t) and (a2, t). Recall that Count Sketch is a linear operator on the frequency vector and thus

CS(a1,a2) = CS(a1,t ) −CS(a2,t ).

The frequencies on the interval (t1, t2) can be approximated by CS(a1,a2), as we will show later.

Therefore, intuitively, if an item is heavy on the interval (t1, t2) it will be reported by CS(a1,a2).
Detailed pseudo-code is presented in Algorithm 1.
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First, we prove that the described technique can provide the desired approximation for L2(t1, t2).

Lemma 3.2. Let A be an SH construction for (α, β)-smooth L2 and Ai = (ai , t) are the suffixes of A
(see Fig. 2). Then for any interval (t1, t2):

L2(a
1,a2) = L2(t1, t2) ±

√
2αL2(t1, t),

where a1 = minai ≥ t1 and a2 = minai ≥ t2.

Proof. From SH invariant [22] L2(a
1, t) > (1 − α)L2(t1, t) :

L2
2
(t1, t) ≥ L2

2
(t1,a

1) + L2
2
(a1, t) ⇒ L2(t1,a

1) ≤
√
2αL2(t1, t)

and similarly for interval (t2,a
2):

L2(t2,a
2) ≤

√
2αL2(t2, t) ≤

√
2αL2(t1, t).

Due to triangle inequality and monotonicity of L2:

L2(t1, t2) ≤ L2(t1,a
1) + L2(a

1, t2) ≤ L2(t1,a
1) + L2(a

1,a2),

L2(a
1,a2) ≥ L2(t1, t2) −

√
2αL2(t1, t).

Repeating the argument for the different triangle:

L2(t1, t2) + L2(t2,a
2) ≥ L2(t1,a

2)

L2(t1, t2) ≥ L2(t1,a
2) − L2(t2,a

2) ≥ L2(a
1,a2) − L2(t2,a

2)

L2(a
1,a2) ≤ L2(t1, t2) +

√
2αL2(t1, t). □

Algorithm 1 L2 heavy hitter algorithm based on [20]

1: function Update(item)

2: maintain SH for L2 with (α, β) =
(
ε2
2
7
, ε4
2
15

)
3: on each bucket Ai maintain Count Sketch CSi
4: functionQuery(t1, t2)
5: a1 = minai ≥ t1 and a

2 = minai ≥ t2
6: subtract sketches CS = CS(a1,t ) −CS(a2,t )
7: query L2 of suffix: L̂2(a

1, t) = SH .query(a1, t)
8: for each item i in CS(a1,t ).heap do
9:

ˆfi (t1, t2) = CS .estimateFreq(i)

10: if ˆfi (t1, t2) >
3ε
4
L̂2(a

1, t) then report

(
i, ˆfi (t1, t2)

)
Theorem 3.3. Algorithm 1 solves (ε, L2)-heavy hitters in the IQ model (Definition 2.1) using

O
(
ε−6 log3 n logδ−1

)
memory bits.1

Proof. From the definition of a1 and a2 in line 5 of Algorithm 1:

∀i : fi (a
1,a2) = fi (t1, t2) − fi (t1,a

1) + fi (t2,a
2).

Note that fi (t1,a
1) ≤ L2(t1,a

1) and fi (t2,a
2) ≤ L2(t2,a

2), then from Lemma 3.2 and due to the

choice of SH parameters:

fi (t1,a
1) ≤

ε

8

L2(t1, t), fi (t2,a
2) ≤

ε

8

L2(t1, t).

1
Here and further, we omit terms log ε−1 and log logn for compactness.
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For a given stream S Count Sketch approximates the counts as follows:
ˆfi (S) = fi (S) ±

ε
8
L2(S) and

its heap contains all ( ε
8
, L2)-heavy hitters. Thus, the sketch CS = CS(a1,t ) −CS(a2,t ) will estimate

the count of any queried item i as

ˆfi (a
1,a2) = fi (a

1,a2) ±
ε

8

L2(t1, t) = fi (t1, t2) ±
ε

4

L2(t1, t),

where the last equality follows from the derivations above.

To prove the correctness of the algorithm, we need to show that:

(1) every (ε, L2)-heavy on (t1, t2) item will appear in the heap of CS(a1,t ) (line 8) and will be

reported (line 10).

(2) no items fj (t1, t2) ≤
ε
2
L2(t1, t) will be reported.

Note that if item i is (ε, L2)-heavy on (t1, t2), then fi (t1, t2) > εL2(t1, t) which implies fi (a
1,a2) >

7ε
8
L2(t1, t) and fi (a

1, t) > 7ε
8
L2(t1, t). The latter one implies that item i will be in the heap ofCS(a1,t ).

The former one given that

ˆfi (a
1,a2) > fi (a

1,a2) −
ε

8

L2(t1, t) >
3ε

4

L2(t1, t)

and L̂2(a
1, t) = (1 ± ε2

2
7
)L2(t1, t) guarantees that heavy item i will be reported in line 10.

Similarly for the light items:

ˆfi (a
1,a2) < fi (a

1,a2) +
ε

8

L2(t1, t) <
3ε

4

L2(t1, t),

therefore no item j with fj (t1, t2) ≤
ε
2
L2(t1, t) will be reported in line 10.

According to Theorem 3 from [22] (see Appendix Theorem A.1), the SH approach requires

O( 1β д(ε,
δ β
n ) logn) bits of memory. Here, д(ε, δ ) is the amount of memory needed for a sketch

to get ε approximation of target function with failure probability at most δ . Note that to avoid

mistaken deletions of suffixes in the SH construction, every target function sketch should suc-

ceed. Therefore L2 sketch should fail with probability at most O( δn ). At the same time, Count

Sketch is needed only at the moment of a query, therefore it should fail with probability at most

O( δ
logn ). Each amplified L2 sketch, according to [5], requires O( 1

ε2 log
2 n) bits of space – same

as the amount of memory that is needed for each Count Sketch. Thus, in total, the algorithm

requires O(ε−6 log3 n logδ−1) memory bits. □

3.3 Exponential Histogram based algorithm
A natural question to ask is whether the Exponential Histogram framework can be used instead of

Smooth Histograms. Recall that the core idea is to maintain (1±ε) approximation for the L2(t −n, t),
which in case of Algorithm 1 guaranteed that we do not loose the heavy items. Target function

L2
2
(·) admits a composable sketch [5] and is weakly additive with Cf = 2. According to Theorem 7

of [30] (see Appendix Theorem A.2), an admittable target function f can be estimated with the

relative error

Er ≤
(1 + ε)

k
C2

f +Cf − 1 + ε,

where ε is the relative error of the L2
2
sketch and k is a parameter of the EH framework. Note that

for Cf = 2, no k can get an error better than Er = 1 + o(1), which only implies a 2-approximation

of the L2-norm on the sliding window. The IQ model is more general than SW. Therefore, the same

idea would not work out of the box, as we can not get (1± ε) approximation for L2(t −n, t). Further,
we suggest two ways to overcome this issue. First, we suggest the following decoupling tweak to

the weak additivity requirement:

∃Cf ,C
′
f ∀S1, S2 : f (S1 ∪ S2) ≤ Cf f (S1) +C

′
f f (S2).
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Keeping the rest of the framework the same and repeating the argument as in Theorem 7 of [30],

the relative error becomes:

Er ≤
(1 + ε)

k
C2

f +C
′
f − 1 + ε .

To find appropriate constants Cf and C ′
f for L2

2
, note that for any positive integers a and b and any

ε ∈ (0, 1) :

(a + b)2 ≤
2

ε
a2 + (1 + ε)b2 −

(
1

√
ε
a −

√
εb

)
2

≤
2

ε
a2 + (1 + ε)b2.

Therefore, applying to L2
2
:

∀S1, S2 : L
2

2
(S1 ∪ S2) ≤

1

2ε
L2
2
(S1) + (1 + ε)L

2

2
(S2),

i.e.,Cf =
2

ε andC
′
f = 1+ε . Setting k = O( 1

ε3 ) gives a (1+ε)-approximation of L2
2
on sliding windows

using the EH framework. Note that the described tweak will work for any admittable function f
for which f (S1 ∪ S2) ≤ Cf f (S1) +C

′
f f (S2), as no other properties of L2 were used in the proof.

Further, we argue that the same approximation can be achieved with a smaller k . We maintain EH

histogram framework for f = L2
2
as proposed in [30] withCf = 2. However, when queried, we output√

f = L2 rather than f = L2
2
. Note that due to the triangle inequality,

√
f (S1 + S2) ≤

√
f (S1)+

√
f (S2).

Denote t0 = t − n; then the core derivation for the relative error Er from Theorem 7 of [30] (see

Appendix Theorem A.2) can be rewritten as follows:

Er =

√
f (t0, t) −

√
f (b1, t)√

f (t0, t)
≤

√
f (t0,b1)

f (t0, t)
≤

√
f (b0,b1)

f (b1, t)
≤

√
Cf

∑
i>0 f (Bi )

k f (b1, t)
≤

√
Cf f (b1, t)

k f (b1, t)
≤

√
Cf

k
.

Setting k = O( 1

ε2 ) provides necessary ε-approximation for L2 on the sliding window. Note, that it

is a polynomial improvement in terms of ε compared to the tweak introduced earlier.

EH

tt − n

BkB4B3B2B1

t1 t2

b0 b1 b2 b3

Fig. 5. Query intuition for the Algorithm 2.

Our algorithm utilizes this approach and maintains:

(1) EH for L2 with k = O(
1

ε2 ) and Cf = 2.

(2) Count Sketch on each bucket of EH .

Later we will show formally that EH for L2 with given k andCf returns L2(t1, t2) ±
ε
2
L2(t1, t). Then,

following the similar argument Count Sketch will detect all the items which are heavy on the

interval (t1, t2).
Here we will go over the query process depicted on Figure 5. When querying with an interval

(t1, t2), EH based algorithmwill find buckets Bi = (b0,b1) and Bj = (b2,b3) such that: t1 ∈ Bi and t2 ∈
Bj , then it computes the Count Sketch CS(b1,b3) as a sum of sketches on the buckets Bi+1, . . . ,Bj .
We will show later that CS(b1,b3) provides sufficient approximation for items’ frequencies on

interval (t1, t2), therefore it will detect items which are heavy on (t1, t2). Detailed pseudo-code is

presented in Algorithm 2.
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Lemma 3.4. Let B be an EH construction for L2
2
with parameters Cf ,k and let Bi = (bi ,bi+1) denote

the buckets of B (see Fig. 2). Then for any interval (t1, t2):

L2(b
1,b3) = L2(t1, t2) ±

√
Cf /k L2(t1, t),

where (b0,b1) is the bucket containing t1 and (b2,b3) is the bucket containing t2.

Proof. By the monotonicity of L2
2
and the EH invariant:

L2
2
(t1,b

1) ≤ L2
2
(b0,b1) ≤

Cf

k

∑
bi>b0

L2
2
(Bi ) ≤

Cf

k
L2
2
(b1, t).

Repeating the argument for (t2,b
3) and taking the square root:

L2(t1,b
1) ≤

√
Cf /k L2(t1, t) and L2(t2,b

3) ≤

√
Cf /k L2(t1, t).

Applying triangle inequality the same way as in the proof of Lemma 3.2 leads to the statement of

the current lemma. □

Algorithm 2 L2 heavy hitter algorithm based on EH

1: function Update(item)

2: maintain EH for L2
2
with k = O

(
1

ε2

)
and Cf = 2.

3: on each bucket Bi maintain Count Sketch CSi
4: functionQuery(t1, t2 )
5: find Bi = (b0,b1) and Bj = (b2,b3) s.t.: t1 ∈ Bi and t2 ∈ Bj
6: compute the union sketch CS = ∪i+1≤l ≤jCSl
7: query L2 of the suffix (t1, t): L̂2(t1, t) = EH .query(b1, t)

8: for each heavy hitter (i, ˆfi ) in CS do
9: if ˆfi >

3ε
4
L̂2(t1, t) then report (i, ˆfi )

Theorem 3.5. Algorithm 2 solves (ε, L2)-heavy hitters problem in IQ model (Definition 2.1) using
O(ε−4 log3 n logδ−1) bits of space.

Proof. Due to Lemma 3.4 for given parameters Cf and k :

∀i : fi (b
1,b3) = fi (t1, t2) ±

ε

16

L2(t1, t).

Approximation guarantees of Count Sketch CS can be rewritten as:

∀i : ˆfi (b
1,b3) = fi (b

1,b3) ±
ε

16

L2(b
1, t).

Therefore, ∀i : ˆfi (b
1,b3) = fi (t1, t2) ±

ε
8
L2(t

1, t). The same lemma applied to interval (t1, t), given
ε
16
-approximation of L2 on each bucket Bi , leads to L̂2(t1, t) = (1 ± ε

8
)L2(t1, t). Thus, any heavy item

with fi (t1, t2) ≥ εL2(t1, t) will be reported in line 9:

ˆfi (b
1,b3) ≥ fi (t1, t2) −

ε

8

L2(t1, t) ≥
7ε

8

L2(t1, t) ≥
3ε

4

L̂2(t1, t).

Similarly, any item with fi (t1, t2) ≤
ε
2
L2(t1, t) not be reported in line 9:

ˆfi (b
1,b3) ≤

5ε

8

L2(t1, t) ≤
3ε

4

L̂2(t1, t).

According to Theorem 7 from [30] (see Appendix Theorem A.2), the EH approach requires

O
(
k · д

(
ε,

δ β
n

)
· logn

)
bits of memory, where д(ε, δ ) is the amount of memory needed for a sketch
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Table 2. Summary of the proposed L2 heavy hitter algorithms in the IQ model.

Algorithm Space complexity Update time Query time

Section 3.2: Smooth Histogram based Algorithm O (ε−6 log3 n log δ−1) O (ε−4 logn) O (ε−2 logn)
Section 3.3: Exponential Histogram based Algorithm O (ε−4 log3 n log δ−1) O (ε−2 logn) O (ε−3 logn)
Section 3.4: Improved Smooth Histogram based Algorithm O (ε−3 log2 n log δ−1) O (logn) O (ε−2 logn)

to get a (1 + ε)-approximation of the target function with a failure probability of at most δ . Hence,
the memory required to maintain SH for L2

2
is O

(
ε−2 log3 n logδ−1

)
. In addition we maintain k

instances of Count Sketch that should succeed simultaneously, it requiresO
(
ε−4 log3 n logδ−1

)
bits

of memory. Thus, in total, the algorithm requires O
(
ε−4 log3 n logδ−1

)
bits. □

3.4 Improved Smooth Histogram based algorithm
Recently, a new algorithm for finding L2-heavy hitters in the SW model was introduced in [21].

The authors show a significant improvement in space complexity and provide a matching lower

bound. The memory footprint of the solution proposed in [21] is O( 1

ε2 log
2 n log 1

εδ ) bits, while

previous result [20] needed at least O( 1

ε4 log
3 n log 1

εδ ) bits. Although the new approach uses the

SH framework, it differs conceptually in the way of catching the heavy hitters. Recall that [20]

requires a (1 + ε)-approximation of the L2 to make sure that no heavy hitters are lost between

neighboring buckets. [21] in contrary maintains SH for L2(t − n, t) with only a constant approxi-

mation and as before runs Count Sketch on each bucket of the histogram. It takes advantage of

the fact that streaming L2-heavy hitter algorithms can report a heavy hitter after seeing only
ε
16
L2

instances, when it happens the item gets into the set of heavy hitter candidates. The frequency

of each candidate is maintained in the separate SH framework with a constant approximation.

Note, that the algorithm is required to return all items with frequency larger than εL2(t − n, t)
and no items with frequency lower than

ε
2
L2(t − n, t). Therefore a constant approximation for the

frequency of each candidate and L2(t − n, t) is enough to test if the candidate is indeed a heavy

hitter.

Additionally, to reduce the memory footprint of the algorithm even further [21] suggests to

replace the Count Sketch algorithm with BPTree [17], to use shared randomness and the strong

tracking argument from [18] to avoid union bound for all bucket sketches to succeed.

We reuse this approach for the IQ model and show that:

(1) maintaining SH for the count of each candidate preserves the desired constant approximation

on intervals,

(2) due to Lemma 3.2, SH with constant approximation for L2(t − n, t) will also approximate

L2(t1, t2) with additive term ±O(1)L2(t1, t).

The query procedure is only slightly different from our first Smooth Histogram based algorithm, as

now in addition to finding the interval (a1,a2) in SH for estimation L2(t1, t2), one also need to query
SH for the count of corresponding heavy hitter candidates. Detailed pseudo-code is presented in

Algorithm 3.

Lemma 3.6. Let A be an SH construction for an (α, β)-smooth sum function S and consider a binary
stream that consists of zeros and ones. Denote by Ai = (ai , t) the suffixes of A (see Fig. 2). Then for any
interval (t1, t2):

S(a1,a2) = S(t1, t2) ± αS(t1, t),

where a1 = minai ≥ t1 and a2 = minai ≥ t2.

Proof. From the SH invariant [22] it follows that:

S(a1, t) > (1 − α)S(t1, t),
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S(t1, t) = S(a1, t) + S(t1,a
1) ⇒ S(t1,a

1) ≤ αS(t1, t).

Repeating the argument for (t2,a
2): S(t2,a

2) ≤ αS(t2, t).
Therefore the statement of the lemma follows:

S(t1, t2) = S(a1,a2) + S(t1,a
1) − S(t2,a

2) ⇒ S(a1,a2) = S(t1, t2) ± αS(t1, t). □

Algorithm 3 L2 heavy hitter algorithm based on [21]

1: function Init

2: init SHL2 with (α, β) =
(
1

10
, 1

200

)
3: init CSi Count Sketch on each SHL2 bucket Ai
4: init HHp an array for potential heavy items

5: // if i ∈ HHp then HHp [i].SH tracks fi in SW

6: function Update(item)

7: update SHL2 and all CSi
8: if item ∈ HHp then update HHp [item].SH

9: for all i for each item (j, ˆfj ) in CSi .heap

10: if ˆfj >
3ε
4
SHL2 .query(Ai ) and j < HHp :

11: HHp .add(j)

12: init HHp [j].SH with (α, β) =
( ε
16
, ε
16

)
13: functionQuery(t1, t2)
14: a1 = minai ≥ t1 and L̂2(a

1, t) = SH .query(a1, t)
15: for each item i ∈ HHp do
16: a1 = minai ≥ t1 and a

2 = minai ≥ t2
17:

ˆfi (t1, t) = HHp [i].SH .query(a1, t)

18:
ˆfi (t1, t2) = ˆfi (t1, t) − HHp [i].SH .query(a2, t)

19: if ˆfi (t1, t2) >
3ε
4
L̂2(a

1, t) then report (i, ˆfi )

Theorem 3.7. Algorithm 3 solves (ε, L2)-heavy hitters problem in IQ model (Definition 2.1) using
O(ε−3 log3 n logδ−1) bits of space.

Proof. First, let us show that all items with fi (t1, t2) ≥ εL2(t1, t) will appear in HHp . Denote

a0 = maxai ≤ t1 then

fi (a
0, t2) ≥ fi (t1, t2) ≥ εL2(t1, t) ≥ εL2(t1, t2).

Therefore, by moment t2, Count Sketch of the bucket (a0, t2) should have reported it in line 10 of

Algorithm 3.

Now we argue that all heavy items will be reported in line 19. Let (a0, t) be the first bucket of
HHp [i].SH then we should consider two cases: t1 ≥ a0 and t1 ≤ a0.

If t1 ≥ a0 then it follows from Lemma 3.6, that:

ˆfi (t1, t2) ≥ f (t1, t2) −
ε

16

f (t1, t).

At the same time SH framework guarantees L̂2(t1, t) ≤ 1.1L2(t1, t). Therefore, if fi (t1, t2) ≥ εL2(t1, t),
then:

ˆfi (t1, t2) ≥
15

16

εL2(t1, t) ≥
3

4

εL̂2(t1, t)

Recall, that Count Sketch reports an item after seeing
ε
16
L2 of its instances. Therefore, for t1 ≤ a0

using the same lemma we can conclude that
ˆfi (t1, t2) ≥ f (t1, t2) −

ε
8
f (t1, t), while the rest of

computation is the same. Thus, all items with fi (t1, t2) ≥ εL2(t1, t) will be reported by the line 19 of

Algorithm 3 .
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Then from Lemma 3.6 for every non-heavy on (t1, t2) item with fi (t1, t2) ≤
ε
2
L2(t1, t), if i ∈ HHp :

ˆfi (t1, t2) ≤ fi (t1, t2) +
ε

16

fi (t1, t) ≤
ε

2

L2(t1, t) +
ε

16

L2(t1, t) ≤
3ε

4

L̂2(t1, t),

and item i will not be reported in line 19.

According to Theorem 3 from [21] (see Appendix Theorem A.1), the modified SH approach

requires O( 1β д(ε, δ ) logn) bits of memory. Algorithm 3 uses β = O(1) for SHL2 , with д(ε, δ ) =

O( 1

ε2 log
2 n) due to L2 sketch and Count Sketch instances. Thus, SHL2 requires O(

1

ε2 log
2 n) bits

of space, and have O(logn) buckets and each can potentially generate up to O( 1

ε2 ) items in HHp .

Therefore, in total, to track ε-approximation to frequencies of all potential heavy hitters, data

structure spendO( 1

ε3 log
3 n) bits of space. Summing the two derived quantities, the space complexity

of Algorithm 3 is O(ε−3 log3 n logδ−1) bits. □

Note that replacing Count Sketch in Algorithm 3 with BPTree [17] improves the space complexity

by another logn factor.

Corollary 3.8. There exists an algorithm that solves (ε, L2)-heavy hitters problem in IQ model
using space O(ε−3 log2 n logδ−1) bits of space.

In this work, we mainly focus on the trade-off between memory and precision. For brevity, we

omit the details of computation for the update and query time as it is straight forward. In Table 2,

we compare space complexity, update and query time of our algorithms.

3.5 Extending to a wider class of functions
Many streaming algorithms and frameworks use a L2-heavy hitter algorithm as a subroutine. One

of them is UnivMon [51], the framework which promotes recent results on universal sketching [19]

in the field of network traffic analysis. The main power of the framework is its ability to maintain

only one sketch for many target flow functions rather than an ad-hoc sketch per each function.

The class of functions that can be queried is comprehensive and covers the majority of those used

in practice, among examples are the L0, L2 norms and entropy. Therefore, L2-heavy hitters is an

essential step towards UnivMon in IQ model. For more details on universal sketching refer to [19];

here we will cover the necessary basics.

Given a function д : N→ N, the goal of universal sketching is to approximate G =
∑n

i=1 д(fi ) by
making one or several passes over the stream. Theorem 2 in [19] states: if д(x) grows slower than
x2, drops no faster than sub-polynomially, and has predictable local variability, then there is an

algorithm that outputs an ε-approximation toG , using sub-polynomial space and only one pass over

the data. The algorithm consists of two main subroutines: (д, ε)-heavy hitters and Recursive Sketch.

The first one finds all items i such that д(fi ) ≥ εG together with an ε-approximation to д(fi ). In
[19], the authors show that if an item is (д, ε)-heavy then it is also (L2,

ε
h )-heavy for sub-polynomial

h; therefore, Count Sketch can be used to find (д, ε)-heavy items. Recursive Sketch was initially

introduced in [43] and further generalized in [23]. It finds ε-approximation ofG using a (д, ε)-heavy
hitter algorithm as the black box, by recursively subsampling the universe, and by estimating the

sum G of the subsampled stream.

In [19] (д, ε)-heavy hitter algorithm requires a subroutine that finds all items i such that

fi (t1, t2) ≥ εL2(t1, t2). However, due to the limitations of the IQ model all three proposed algorithms

only find all items i such that fi (t1, t2) ≥ εL2(t1, t). Further, we adjust the argument from [19]

to argue that one can use algorithms from previous sections to find (д, ε)-heavy hitter with a

guarantee defined as follows:
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Definition 3.9 ((ε,д)-heavy hitters problem in IQ). For 0 < ε < 1 output set of itemsT ⊂ [N ], such

that T contains all items with д(fi (t1, t2)) ≥ εG(t1, t) = ε
∑

j д(fj (t1, t)) and no items with

д(fi (t1, t2)) ≤
ε
2
G(t1, t).

Propositions 15 and 16 in [19] show that if function д is slow-jumping and slow-dropping, then

there exists a sub-polynomial function H :

∀x ≤ y : д(y) ≥
д(x)

H (y)
, д(y) ≤

(y
x

)
2

yαH (y)д(x). (1)

We can adjust the argument of Lemmas 17 and 18 in [19] to handle the heavy hitters with additive

error.

Lemma 3.10. Let HH (ε, δ ) be an algorithm that solves (ε, L2)-heavy hitters problem in IQ model
(Definition 2.1), and д is a slow-jumping and slow-dropping function. Then HH

(
ε

2H (n) , δ
)
solves

(ε,д)-heavy hitters problem in IQ model (Definition 3.9).

Proof. Note that for any (д, ε)-heavy i:

д(fi (t1, t2)) ≥ ε
∑

j д(fj (t1, t)).

Therefore, applying the second statement of Equation 1:

д(fi (t1, t2)) ≥
∑

fj (t1,t )≤fi (t1,t2)

εд(fi (t1, t2))f
2

j (t1, t)

H (n)f 2i (t1, t2)

f 2i (t1, t2) ≥
ε

H (n)

∑
fj (t1,t )≤fi (t1,t2)

f 2j (t1, t)

Similarly, applying the first statement of Equation 1:

д(fi (t1, t2)) ≥
∑

fj (t1,t )≥fi (t1,t2)

εд(fi (t1, t2))

H (n)
.

Hence, there are at most
H (n)
ε items with fj (t1, t) ≥ fi (t1, t2), and HH

(
ε

2H (n) , δ
)
will detect it. □

Further we argue that Recursive Sketch with (д, ε)-heavy hitter algorithm which finds all i such
that д(fi (t1, t2)) ≥ εG(t1, t) will return Ĝ(t1, t2) = G(t1, t2) ± εG(t1, t).

Algorithm 4 Recursive GSum(S0, ε) [19]

1: H1, . . . ,Hϕ=O (logn) are pairwise independent 0/1 vectors

2: Sj is a subsampled stream {s ∈ Sj−1 : Hj (s) = 1}

3: Compute, in parallel, HHj = HH (Sj )
4: Compute Yϕ = Gϕ (t1, t2) ± εGϕ (t1, t)
5: for j = ϕ − 1, . . . , 0 do
6: compute Yj = 2Yj+1 +

∑
i ∈HHj (1 − 2Hj (i))д̂(fi )

7: return Y0

Theorem 3.11. Let HH be an algorithm that finds all i such that д(fi (t1, t2)) ≥ εG(t1, t) together
with ε-approximation of д(fi (t1, t2)). Then Algorithm 4 computes Ĝ(t1, t2) = G(t1, t2) ± εG(t1, t) and
errs with probability at most 0.3. Its space overhead is O(logn).
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Proof. Note thatG j is aG-sum computed over the subsampled stream S j . According to line 4 of

Alg. 4 Yϕ = Gϕ (t1, t2) ± εGϕ (t1, t). Our goal is to evaluate the error propagation from the top level

of subsampling ϕ to the bottom one and show that Y0 = G(t1, t2) ± εG(t1, t).
Consider a random variable X j =

∑
i ∈HHj

д(fi ) + 2
∑

i<HHj
Hj (i)д(fi ), an unbiased estimator of

G j (t1, t2) with variance bounded as: Var (X j ) =
∑

i<HHj

д2(fi ) ≤ εG j (t1, t)
∑
д(fi ) ≤ εG2

j (t1, t) by the

definition ofHHj and monotonicity ofG . Therefore, by conditioning onHHj success and Chebyshev

inequality:

Pr(|X j −G j (t1, t2)| ≥ ε ′G j (t1, t)) ≤
ε

ε ′2
+ δ . (2)

By definition of Hj , X j can be rewritten as

X j = 2G j+1 +
∑

i ∈HHj

(1 − 2Hj+1(i))д(fi ).

Then, |X j − Yj | ≤ 2|G j+1 − Yj+1 | +
∑

i ∈HHj
|д̂(fi ) − д(fi )|. To simplify further derivations, denote

E1j = |X j −G j |, E
2

j = |G j − Yj | and E
3

j =
∑

i ∈HHj
|д̂(fi ) − д(fi )|. E2j = |G j −Yj | ≤ |G j −X j | + |X j −Yj | ≤

E1j + 2E2j+1 + E3j . Therefore, the error will propagate to layer 0 as: E2
0
≤ E1

0
+ 2E2

1
+ E3

0
≤ . . . ≤

2
ϕE2ϕ +

ϕ∑
j=0

2
jE1j +

ϕ∑
j=0

2
jE3j . Denote event 2

ϕE2ϕ ≥ ε ′′G(t1, t) as A, event
∑ϕ

j=0 2
jE1j ≥ ε ′′G(t1, t) as B,

and event

∑ϕ
j=0 2

jE3j ≥ ε ′′G(t1, t) as C .

Apply formula 2 for all j, then Pr(B) is upper bounded by:

Pr

(
ε ′

ϕ∑
j=0

2
jG j (t1, t) ≥ ε ′′G(t1, t)

)
+ (ϕ + 1)

( ε

ε ′2
+ δ

)
.

Note that E
(∑ϕ

j=0 2
jG j (t1, t)

)
= (ϕ + 1)G j (t1, t), therefore by Markov: Pr(B) ≤ (ϕ + 1) ε

′

ε ′′ + (ϕ +

1)

(
ε
ε ′2 + δ

)
.

Recall that HHj fails with probability at most δ , there are at most 1/ε ′ items such that д(fi ) ≥
εG j (t1, t), and ifHHj succeeds then д̂(fi ) = (1±ε)д(fi ) for all i such thatд(fi ) ≥ εG j (t1, t). Therefore,∑

i ∈HHj
|д̂(fi ) − д(fi )| < εG j (t1, t), and we can bound Pr(C) from above with:

Pr

©­«ε
ϕ∑
j=0

2
jG j (t1, t) ≥ ε ′′G(t1, t)

ª®¬ + (ϕ + 1)δ .
Finally, applying Markov: Pr(C) ≤ (ϕ + 1) ε

ε ′′ + (ϕ + 1)δ .
To bound Pr(A) recall that Yϕ = Gϕ (t1, t2) ± εGϕ (t1, t) with probability at least 1 − δ and

E(2ϕGϕ (t1, t)) = G(t1, t). Therefore, P(A) ≤
ε
ε ′′ + δ , and putting all together:

P(A ∪ B ∪C) ≤ (ϕ + 2) ε
ε ′′ + (ϕ + 1)

ε ′
ε ′′ + (ϕ + 1)(

ε
ε ′2 + δ ). Choosing ε ≤ 0.1ε ′′2

(ϕ+1)3 and ε
′ ≤ 0.1ε ′′

ϕ+1 we get

the statement of the theorem P(|Y0 −G(t1, t2)| ≥ ε ′′G(t1, t)) ≤ 0.3. □

3.6 Extending to a wider class of queries
Recall that the interval queries (t1, t2) introduced earlier were not measured in terms of time, but

in the number of packets passed through. However, in practice, it is often more useful when one

can query some statistic in time-based intervals, such as a one-hour interval that occurred half a

day ago or from 5PM to 6PM yesterday. All presented algorithms are easily extendable to answer

time-based interval queries. One only needs to create a timestamp for each bucket of SH or EH

framework, and use that timestamp when searching for corresponding buckets approximating the
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(a) Step 0 (b) Step 1 (c) Step 2 (d) Step 3 (e) Step 4

Fig. 6. Illustration of the attack pinpointing algorithm’s first steps on the Chicago 16 trace with 63MB. In
steps 1, 3 and 4, the first unexpected entropy appeared in the last two sub-intervals, allowing the algorithm
to prune the first sub-interval. In steps 0 and 2, the algorithm encounters abnormally high entropy already in
the second sub-interval and therefore prunes the latest sub-interval. For reference, we annotate the actual
starting time of the attack (which is not known to the algorithm).

interval. Note that all presented algorithms support weighted packets, i.e., when each packet i
arrives with its weightwi , which corresponds to the update fi = fi +wi .

3.7 Attack localization algorithm
Next, we describe an attack localization algorithm that assumes the capability to estimate entropy

in the IQ model.

Our algorithm periodically estimates the entropy within a sliding window, e.g., of once per 1M

packets, and maintains the average and standard deviation of the entropy over previous windows.

If the current entropy measurement is not within α > 1 standard deviations from the past entropy

then we raise an alarm and begin with the attack localization process. α is a sensitivity parameter;

a low α implies that we detect attacks quickly but raise some false alarms, while a larger value

means that we are slower to detect attacks but raise fewer false alarms. In our evaluation, we select

α = 5, which provides very few false alarms and is still sensitive enough to quickly detect attacks.

We choose to base our system on the entropy signal which is known to detect a variety of

attacks [31, 36, 48, 56, 58, 59].

Our attack localization process begins within a suspected interval of the two last windows (e.g.,

4M-6M). We use these two window intervals as a Baseline, as any technique to measure entropy

over sliding window (e.g., [6, 38]) can perform this kind of localization. Setting the Baseline interval

as the last two windows makes sense as the attack did not necessarily start within the window that

raised the alarm. It is possible that the attack began within the previous window but did not build

enough impact to trigger the alarm.

Next, we attempt to recursively narrow the suspected interval. We partition the current interval

(e.g., 4M-6M) into four equal parts (e.g., [4M,4.5M], [4.5M,5M], [5M,5.5M], and [5.5M,6M]) and

estimate the entropy on each of them. Again, we seek intervals with entropy that is not within five

standard deviations of the usual entropy. The delicate point is to understand that entropy is not

linear, and we cannot compare the entropy of a short interval to that of a long interval.

Instead, we use the entropy of equal sized subintervals that happened before the Baseline

intervals to define the ‘normal’ entropy. That is, we calculate the mean and standard deviation

of such intervals. We call these Safe subintervals as they come before the attack. In this example,

we estimate the entropy of [3.5M,4M], [3M,3.5M], etc. We favor the most recent safe intervals

for practical concerns (as the normal behavior may gradually change), as well as for algorithmic

consideration as the entropy estimation error for these intervals is smaller (see Figure 12).

We set the new suspected interval as a concatenation of all abnormal intervals, and recursively

repeat the above process until we can no longer shorten the suspected interval. The operation of the
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(a) 10-20k interval (b) Multisuffix

Fig. 7. Average frequency estimation error for flows (a) in 10-20k intervals, and (b) for various suffix lengths
on the NY2018 dataset.

algorithm is illustrated in Figure 6. Specifically, if one of the first two subintervals had unexpectedly

high entropy (as in Step 0 and 2), we prune the latest subinterval. Otherwise (as in steps 1,3, and 4),

we can safely prune the first subinterval as we expect the entropy to rise after at least one complete

attack subinterval. The algorithm proceeds until either no subinterval has too high entropy or until

we get an estimated entropy of 0 from our algorithm (this happens if the queried interval is too

small and consists of less than half a block, see Algorithm 4 and its description in Section 3.5).

Note that since network traffic has internal noise, and our algorithms have estimation error, we

are unable to identify attacks that do not significantly change the entropy. This is usually acceptable

for network operators as typically only significant attacks (e.g., that triple the bandwidth) are

causing noticeable harms to the network services. Networks often have enough resources to cope

with small attacks (e.g., only 10% increase in traffic) and these go unnoticed. Our limitations are

inherently similar to other entropy-based detection algorithms [6, 38]. The novelty of our approach

lies within the attack localization process that allows to accurately time the beginning of the attack.

4 EVALUATION
Next, we evaluate Algorithm 3 for various network measurement tasks. We have implemented a

prototype in C and evaluated the accuracy vs. memory using four Internet Traces: “Equinix-Sanjose”

in 2014 (SanJose2014) [3], “Equinix-Chicago” in 2016 (Chicago2016) [1], “Equinix-NewYork” in 2018

(NewYork2018) [2]; and a data center trace from the University of Wisconsin (Univ2) [13].

All experiments start by evaluating our algorithms on the first 10M packets from the specific

trace. We evaluate multiple measurement metrics on two experiments. In the first experiment, we

select a packet once every 30k packets and estimate the frequency of the corresponding flow on an

interval between 10k-20k packets ago (suffix length of 20k). In the second, we estimate frequencies

on varying suffixes and show how the suffix length affects the empirical error. To do so, we select

a packet once per 200k packets and estimate the frequency of the corresponding flow for every

possible suffix length from 100K to the window size of 1M. The depicted figures for the second

experiment are for the NewYork2018 dataset.

4.1 Frequency estimation
We start with the frequency estimation problem. The results in Figure 7(a) show the trade-off

between memory consumption and the empirical error for different network traces. As expected,

having more memory increases the accuracy of frequency estimation. The difference between the
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(a) Chicago2016 (b) NewYork2018

Fig. 8. Average frequency estimation error on the NY2018 dataset for flows in 10-20k intervals compared to
sliding window algorithms.

(a) 10-20k interval (b) Multi suffix

Fig. 9. Average L2 norm estimation error for flows (a) in 10-20k intervals, and (b) for various suffix lengths on
the NY2018 dataset.

(a) Precision (b) Recall (c) F1 Measure

Fig. 10. Quality of HH solution for 10k-20k interval (first experiment).

traces is mainly attributed to the workload characteristics and namely how the L2 norm changes

during each trace.
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(a) Precision (b) Recall (c) F1 Measure

Fig. 11. Quality of HH solution for varying suffix lengths (second experiment).

Figure 7(b) shows the results for the second experiment on the NY2018 trace. Notice that (i) longer

suffixes indeed have larger estimation error than shorter ones. This is expected as our analysis

indicates that the error is proportional to the suffix length. (ii) Notice that more memory increases

accuracy for every suffix length. This is also expected as the error is proportional to the accuracy

parameter ε which decreases with the memory. (iii) The average error is small for moderate memory

consumption, e.g., given 18MB, the average error is less than 64 packets for all suffix lengths.

Next, we compare Algorithm 3 (denoted IQ) to the deterministic WCSS [10] and the randomized

Memento [8], which are state of the art sliding window algorithms. Since sliding window algorithms

estimate the frequency over the entire window, we satisfy interval queries by normalizing the

frequency in the window by the interval size. For example, we estimate the frequency in an interval

whose size is 1% of the entire window as 0.01 times the estimated frequency over the whole window.

The results, shown in Figure 8, indicate that the accuracy of WCSS and Memento is very similar for

the entire evaluated memory range and that they do not significantly improve as we increase the

memory. The reason is that both are able to provide highly accurate estimations for the frequency

in the window and the depicted error is due to the difference between the distribution in the queried

interval and that of the entire window. In contrast, our algorithm improves when given more space

and is able to provide accurate interval estimates when given enough memory. We conclude that

using a sliding window algorithm for the task is inadequate unless space is extremely tight and

our solution cannot run.

4.2 L2 norm estimation
We repeat the above experiments for L2 norm estimation. Figure 9(a) shows results for the first

experiment. Notice that we get the same trend as before, more memory leads to better accuracy in

estimating the L2 norm. Figure 9(b) shows results for the second experiment. As can be seen, (i) we

get better L2 estimations for small suffixes, (ii) additional memory increases the accuracy.

4.3 Heavy hitters estimation
We now evaluate L2 heavy hitters, with threshold of: θ = 0.5%. That is, we define a heavy hitter as

a flow whose frequency is at most 0.5% of the L2 norm for the referenced interval.

We evaluate three metrics for heavy hitters estimation. (i) Precision: measure how many of the

reported flows are indeed heavy hitters, (ii) Recall: measure how many of the real heavy hitters are

reported, and (iii) the F1 norm that factors both Precision and Recall into a single measure. The

perfect solution has F1 = 1, and the closer the value is to 1, the more accurate the solution.
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(a) 10-20k interval (b) Multi suffix

Fig. 12. Average entropy relative error for (a) 10-20k intervals, and (b) various suffix lengths on the NY2018
dataset.

Figure 10(a) shows precision and Figure 10(b) presents recall for various workloads for the first

experiment. Notice that (i) increasing memory increases both precision and recall; (ii) we get to

around 90% recall and 95+% precision within reasonable memory. Figure 10(c) shows the F1 values
in the same experiment. As can be observed, the value converges close to 1 as we increase the

memory.

Figure 11 shows result for the second experiment. Figure 11(a) shows precision, Figure 11(b)

shows recall and Figure 11(c) shows the F1 metric. As can be observed, longer suffixes yield less

accurate results. For precision, there is a slight anomaly for 2 and 4.5MB sized algorithms as the

precision improves for longer suffixes at the end of the range. While precision improves, the recall

drops which implies that we detect fewer heavy hitters but the list contains a larger portion of

heavy hitters. Despite this anomaly, we clearly see the trend that increasing the memory improves

the accuracy in all metrics.

4.4 Entropy estimation
Finally, we evaluate the error in Entropy estimation. We used Algorithm 4, and extended Univ-

Mon [51] to provide Entropy estimations. Figure 12 shows the results. As illustrated, we estimate

the entropy for this interval very accurately throughout the range of memory. As expected, more

memory means a better estimation.

4.5 Case Study: Attack Localization
In this section, we showcase our attack localization algorithm, which is made possible by the new

infrastructure we developed for IQ queries with the L2 norm. To do so, we inject a DDoS attack

within a random offset of a real Internet trace. From that offset, 70% of the traffic belongs to the

DDoS attack and the rest is the original trace. We then use our attack localization algorithm to

identify the beginning of the attack.

DDoS attack generation:We simulate an attack containing numerous attackers from 50 ran-

domly picked subnets and numerous victims that share a single 16-bit subnet. Our attack is similar

to the one considered in [8]. The high number of attackers and the low per-attacker traffic makes

attack localization impossible using existing IQ techniques.

Localization results: Figure 13 shows the results for our attack localization technique. The

figure shows the true entropy and distinct count of the stream along with the best localization

achieved by the baseline, as well as by our attack localization algorithm when the underlying IQ

algorithm is given different amount of memory. Our results show that (i) the baseline solution
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(a) New York 18 (b) Chicago 16 (c) San Jose 14

Fig. 13. Pinpointing the beginning of a DDoS attack with a sliding window algorithm (Baseline), as well as
our own IQ model algorithm, varying memory consumption. Depicted are the exact entropy and distinct
values; these are not known to the algorithm which approximates them.

Table 3. In-memory processing speed.

Performance 1 Core 2 Cores 4 Cores 8 Cores

Packet Rate 1.85Mpps 3.58Mpps 7.23Mpps 14.37Mpps

Throughput 13.7Gbps 26.51Gbps 53.54Gbps 106.42Gbps

using sliding windows is inaccurate for the task; That is, while existing methods may identify the

attack they cannot localize it. (ii) Our attack localization successfully localizes the beginning of the

attack; and (iii) there is a trade-off between the localization’s accuracy and the allocated memory.

More memory allows for better localization.

The results also confirm the effectiveness of our configuration, as the same setup works for all

three traces. Our configuration also successfully detects stronger attacks.

4.6 Deployability
Finally, we evaluate the deployability of Algorithm 3. We measure the throughput of our algorithm

when varying the number of threads. Table 3 shows the obtained results for the following configu-

ration: Single-thread/multiple-thread with OpenMP in a commodity server with Intel Xeon E5-2640

v4 CPU. As shown, we attain 1.85 Million packets per second (Mpps) with a single thread using

the smallest error we tested (ϵ=0.044) and can scale the throughput up to 14.37Mpps with eight

threads. For reference, the average TCP packet size in the recent NewYork2018 trace is 994 Bytes,

which implies that we must handle at least 1.25Mpps to cope with realistic traffic on a 10Gbps link.

Clearly, such speed is within the capability of our approach, and we leave further improvements

on the processing speed as future work.

5 DISCUSSION
This paper studies the IQ model that allows calculating metrics on any interval within a recent

window. While databases often provide similar capabilities, they also maintain a full subset of

the data. Our novelty lies in providing such capabilities in a space-efficient manner which is

considerably smaller than any database. Our work utilizes sketches, which are extensively used in

network measurement and is a step towards realizing efficient interval queries in network devices.

Our work studies how to extend L2 heavy hitter algorithms to the IQ model. We justify the

focus on L2 as it is used as a building block in monitoring a large variety of network measurement

tasks such as frequency estimation, L2 norm, the number of distinct flows, and the entropy of
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traffic distribution. We suggest three different techniques to do so, each improving on the space

requirement of the previous one.We also extend the analysis of the previously suggested Exponential

Histogram [30], which enables it to be used as a building block in the IQ model. Finally, we use

our best algorithm to extend UnivMon capable of all the network tasks mentioned above [51] to

the IQ model, based on our best L2 heavy hitter algorithm. Our work is the first to provide these

measurement tasks in the IQ model, and through an extensive evaluation on real Internet traces, we

show that these capabilities are practical within the available memory range of network devices.

We anticipate that IQ capabilities may enable a new generation of network applications. An

example of such a potential application is automatic packet capture from attacks and traffic anom-

alies within network devices. Ideally, such captures would increase the visibility of attacks and

network anomalies and may facilitate a new generation of security applications. Our work also

makes an important practical step toward realizing such a capability by introducing an algorithm

to localize the beginning of a traffic anomaly. We evaluate our localization algorithm under realistic

conditions and demonstrate the ability to pinpoint the start of simulated attacks.

In the future, we plan to run the data plane of IQ algorithms on top of virtual switches such as

OVS [61], VPP [34], or BESS [40], and implement the control plane within an SDN controller. Our

evaluation shows that our approach has the potential to cope with the line speed of such measure-

ment. Further, we believe that our speed can further be increased by replacing our CountSketch-

based implementation within the faster AlwaysCorrect-NitroSketch [50] at the cost of a larger

memory requirement. We envision that similar acceleration methods may enable IQ queries on

40G links.
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A EXTERNAL THEOREMS REFERREDWITHIN MANUSCRIPT
Theorem A.1 ([22], Theorem 3). Let f be a (α, β)-smooth function. If there exists an algorithm Λ

that maintains an (ε, δ )-approximation of f onD, using space д(ε, δ ) and performing h(ε, δ ) operations
per stream element, then there exists an algorithm Λ′ that maintains a (α + ε)-approximation of f on
sliding windows and uses O

(
1

β

(
д

(
ε,

δ β
logn

)
+ logn

)
logn

)
bits and O

(
1

β h
(
ε,

δ β
logn

)
logn

)
operations

per element.

Theorem A.2 ([30], Theorem 7). A function f with properties:
(1) f (Bi ) ≥ 0.
(2) f (Bi ) ≤ poly(|Bi |).
(3) f (B1 + B2) ≥ f (B1) + f (B2), where B1 + B2 denotes the concatenation of adjacent buckets B1

and B2.
(4) f (B1 + B2) ≤ Cf (f (B1) + f (B2)), where C f ≥ 1 is a constant.
(5) The function f (B) admits a “sketch” which requires дf (|B |) space and is composable; i.e., the

sketch for f (B1 + B2) can be composed efficiently from the sketches for f (B1) and f (B2).
can be estimated over sliding windows with relative error

0 ≤ Er ≤ (1 + ε)2
C2

f

k
+Cf − 1 + ε

using O(k logn(logn + дf (n))) bits of memory, where ε is the bound on relative error of the sketches.

B COMPARISONWITH "PERSISTENT DATA SKETCHING" [64]
Model suggested in [64] differs from the results presented in current manuscript in several dimen-

sions:

(1) Our model assumes the limit to the size of the window which can be queried (t1, t2) ⊂ (t −n, t)
and all our sketches require space sublinear in the maximum size of the windown (see Table 2).
[64], in contrary, have a space requirement which is linear in the total length of the stream (see

paragraph "Space and query time" of Section 4.2 in [64]), therefore will not work with infinite

streams. The attack localization use case, presented in Section 4.5, depicts the advantage of

of the current paper.

(2) We prove the space bounds for all our sketches in the worst case (adversarial) scenario of

the input stream. In contrary, [64] assumes the stream to be random, and provides space

guarantees only in expectation. Clearly, such an assumption is a drawback for security

applications.

(3) [64] introduces the data structures for L1-heavy hitters and L2-norm estimation. Our main

result is L2 heavy hitters and theoretical justification of our extension of UnivMon [51]

framework to interval queries. In turn, this allows approximating a variety of functions that

can be computed on interval queries (e.g., entropy). The closest comparable result in our

manuscript and [64] is approximation of L2-norm on the interval (t1, t2): Lemma 3.4 above

and Theorem 4.2 in [64].

Though a direct comparison can not be done as [64] does not have worst-case guarantees, we

compare the guarantees assuming random streams. According to Lemma 3.4, and Theorem A.2, our

algorithm can estimate L2(t1, t2) with error ±O( 1√
k
)L2(t1, t) using space ofO(k(logn+д(ε))), where

д(ε) is space needed by AMS sketch
2
, therefore approximation±εL2(t1, t) can be achieved with space

O( 1

ε2 (logn +
1

ε2 )). To achieve the same approximation we adopt results from Theorem 4.2 in [64]

2
for simplicity we avoid terms log

1

δ , log
1

ε , log logn and count all complexities in words, rather than bits.
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which provides approximation error of ±ε ′(L2
2
(t1, t2)+

∆2

ε ′2 ). We set ε ′ = ε2 (this seems to be a natural

choice as our approximations are ±εL2 and [64] uses ±ε ′L2
2
).

ε ′
(
L2
2
(t1, t2) +

∆2

ε ′2

)
= ε2L2

2
(t1, t) ⇒ L2

2
(t1, t2) +

∆2

ε4
= L2

2
(t1, t)

⇒
∆2

ε4
≤ L2

2
(t1, t) ⇒ ∆ ≤ ε2L2(t1, t)

The Space complexity of the algorithm presented in [64] is therefore

O

(
m

∆
+

1

ε ′2

)
= O

(
m

ε2L2(t1, t)
+

1

ε4

)
.

We assume, that n = m (i.e., we adjust our solution to the model presented in [64]). Note, that

L2(t1, t) ≤ L1(t1, t) ≤ L1(0, t) =m with the equality holding when only one unique item is present

in the stream (i.e., unrealistically extreme case). In that case, on the the very outdated queries

(i.e. when t1 and t2 both very close to beginning of the stream) we have both our algorithm and

algorithm from [64] working in space O( 1

ε4 ); however, if we interested in queries more recent, for

instance L2(t1, t) =
√
m, then our algorithm requires memory logarithmic inm: O( 1

ε2 (logm +
1

ε2 ))

while result from [64] requires space polynomial inm: O(
√
m
ε2 +

1

ε4 ).
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